|
|
A178322
|
|
Numbers n such that 156/101*(10^(4n)-1)-1 is prime.
|
|
2
|
|
|
1, 2, 5, 29, 30, 108, 679, 4478, 8736, 17000, 22427, 22731
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If n is in the sequence then m=91*(156/101*(10^(4n)-1)-1) is a term of A072394. Namely if n is a term of this sequence then for m=1/101*(14196*10^(4n)-23387), we have sigma(m)=reversal(m)-m (see comment lines of A072394).
Numbers corresponding to the larger terms are probable primes.
Next term exceeds 3500. - Robert G. Wilson v, Aug 08 2011.
a(13) > 40000. - Robert Price, May 23 2014
|
|
LINKS
|
Table of n, a(n) for n=1..12.
|
|
MATHEMATICA
|
Select[Range[700], PrimeQ[156/101*(10^(4 #) - 1) - 1] &]
|
|
CROSSREFS
|
Cf. A072394, A178321.
Sequence in context: A248235 A327345 A049050 * A165161 A098858 A213995
Adjacent sequences: A178319 A178320 A178321 * A178323 A178324 A178325
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Farideh Firoozbakht, May 26 2010
|
|
EXTENSIONS
|
a(8)-a(12) from Robert Price, May 23 2014
|
|
STATUS
|
approved
|
|
|
|