login
Inverse of coefficient array for polynomials P(n,x)=x*P(n-1,x)+floor(n^2/4)*P(n-2,x), P(0,x)=1,P(1,x)=x.
1

%I #2 Mar 30 2012 18:59:27

%S 1,0,1,-1,0,1,0,-3,0,1,3,0,-7,0,1,0,17,0,-13,0,1,-17,0,69,0,-22,0,1,0,

%T -155,0,201,0,-34,0,1,155,0,-959,0,507,0,-50,0,1,0,2073,0,-4001,0,

%U 1107,0,-70,0,1,-2073,0,18077,0,-13964,0,2227,0,-95,0,1,0,-38227,0,101861,0

%N Inverse of coefficient array for polynomials P(n,x)=x*P(n-1,x)+floor(n^2/4)*P(n-2,x), P(0,x)=1,P(1,x)=x.

%C First column is the aerated Genocchi numbers A001469. Inverse is A178116.

%e Triangle begins

%e 1,

%e 0, 1,

%e -1, 0, 1,

%e 0, -3, 0, 1,

%e 3, 0, -7, 0, 1,

%e 0, 17, 0, -13, 0, 1,

%e -17, 0, 69, 0, -22, 0, 1,

%e 0, -155, 0, 201, 0, -34, 0, 1,

%e 155, 0, -959, 0, 507, 0, -50, 0, 1,

%e 0, 2073, 0, -4001, 0, 1107, 0, -70, 0, 1,

%e -2073, 0, 18077, 0, -13964, 0, 2227, 0, -95, 0, 1

%e Production matrix is

%e 0, 1,

%e -1, 0, 1,

%e 0, -2, 0, 1,

%e 0, 0, -4, 0, 1,

%e 0, 0, 0, -6, 0, 1,

%e 0, 0, 0, 0, -9, 0, 1,

%e 0, 0, 0, 0, 0, -12, 0, 1,

%e 0, 0, 0, 0, 0, 0, -16, 0, 1,

%e 0, 0, 0, 0, 0, 0, 0, -20, 0, 1

%K sign,tabl

%O 0,8

%A _Paul Barry_, May 20 2010