login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177694 Triangle t(n,m) = p(n)/ (p(m)*p(n-m) ) read by rows, where p(n>=1) = 1, -1, 2, 10, 10, -160, -2080,.. are partial products of A106852. 0
1, 1, 1, 1, -1, 1, 1, -2, -2, 1, 1, 5, 10, 5, 1, 1, 1, -5, -5, 1, 1, 1, -16, 16, -40, 16, -16, 1, 1, 13, 208, -104, -104, 208, 13, 1, 1, 35, -455, -3640, -728, -3640, -455, 35, 1, 1, -74, 2590, -16835, 53872, 53872, -16835, 2590, -74, 1, 1, -31, -2294, 40145, 104377 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

Row sums are: 1, 2, 1, -2, 22, -6, -38, 236, -8846, 79108, -1385636,...

REFERENCES

Advanced Number Theory, Harvey Cohn, Dover Books,1963, Page 47ff

LINKS

Table of n, a(n) for n=0..59.

FORMULA

p(n+1) = product_{i=0..n} (-1)^i*A106852(i).

t(n,m) = p(n)/(p(m)*p(n-m)).

EXAMPLE

1;

1, 1;

1, -1, 1;

1, -2, -2, 1;

1, 5, 10, 5, 1;

1, 1, -5, -5, 1, 1;

1, -16, 16, -40, 16, -16, 1;

1, 13, 208, -104, -104, 208, 13, 1;

1, 35, -455, -3640, -728, -3640, -455, 35, 1;

1, -74, 2590, -16835, 53872, 53872, -16835, 2590, -74, 1;

1, -31, -2294, 40145, 104377, -1670032, 104377, 40145, -2294, -31, 1;

MATHEMATICA

Clear[t, n, m, c, q, w, f, a];

f[0, a_] := 0; f[1, a_] := 1;

f[n_, a_] := f[n, a] = -f[n - 1, a] - a*f[n - 2, a];

c[n_, a_] := If[n == 0, 1, Product[f[i, a], {i, 1, n}]];

w[n_, m_, q_] := c[n, q]/(c[m, q]*c[n - m, q]);

Table[Flatten[Table[Table[w[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]

CROSSREFS

Sequence in context: A232648 A295690 A219727 * A092450 A279629 A014291

Adjacent sequences:  A177691 A177692 A177693 * A177695 A177696 A177697

KEYWORD

sign,tabl

AUTHOR

Roger L. Bagula, May 11 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 24 18:47 EDT 2019. Contains 326295 sequences. (Running on oeis4.)