login
Number of permutations of 2 copies of 1..n avoiding adjacent step pattern up, up.
0

%I #14 Mar 11 2021 20:42:48

%S 1,1,6,67,1345,42540,1954681,123179785,10202958366,1075213876195,

%T 140503060278001,22298495343474372,4224949686497139601,

%U 942067522308032112721,244201603555824428994486,72820161285112813781838787,24752401241200431437146873345

%N Number of permutations of 2 copies of 1..n avoiding adjacent step pattern up, up.

%H Mingjia Yang, Doron Zeilberger, <a href="https://arxiv.org/abs/1805.06077">Increasing Consecutive Patterns in Words</a>, arXiv:1805.06077 [math.CO], 2018.

%H Mingjia Yang, <a href="https://doi.org/10.7282/t3-d9z1-aw94">An experimental walk in patterns, partitions, and words</a>, Ph. D. Dissertation, Rutgers University (2020).

%K nonn

%O 0,3

%A _R. H. Hardin_, May 10 2010

%E a(12)-a(15) from _Alois P. Heinz_, Oct 22 2013

%E a(0), a(16) from _Alois P. Heinz_, Aug 08 2018