login
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} starting with exactly k consecutive integers (1<=k<=n).
1

%I #8 May 21 2024 10:18:25

%S 1,1,1,4,1,1,18,4,1,1,96,18,4,1,1,600,96,18,4,1,1,4320,600,96,18,4,1,

%T 1,35280,4320,600,96,18,4,1,1,322560,35280,4320,600,96,18,4,1,1,

%U 3265920,322560,35280,4320,600,96,18,4,1,1,36288000,3265920,322560,35280,4320,600,96,18,4,1,1

%N Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} starting with exactly k consecutive integers (1<=k<=n).

%H G. C. Greubel, <a href="/A177262/b177262.txt">Rows n = 1..50 of the triangle, flattened</a>

%F T(n, k) = (n-k)*(n-k)! if k < n, otherwise T(n,n) = 1.

%F T(n, 1) = A094258(n) = (n-1)!(n-1).

%F Sum_{k=1..n} T(n, k) = A000142(n) (row sums).

%F Sum_{k=1..n} k*T(n,k) = Sum_{j=1..n} j! = A007489(n).

%F Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A005165(n). - _G. C. Greubel_, May 18 2024

%e T(4,2)=4 because we have 1243, 2314, 3412, and 3421.

%e Triangle starts:

%e 1;

%e 1, 1;

%e 4, 1, 1;

%e 18, 4, 1, 1;

%e 96, 18, 4, 1, 1;

%e 600, 96, 18, 4, 1, 1;

%e 4320, 600, 96, 18, 4, 1, 1;

%e 35280, 4320, 600, 96, 18, 4, 1, 1;

%p T := proc (n, k) if k = n then 1 elif k < n then factorial(n-k)*(n-k) else 0 end if end proc: for n to 11 do seq(T(n, k), k = 1 .. n) end do; # yields sequence in triangular form

%t T[n_, k_]:= (n-k+1)! -(n-k)! +Boole[k==n];

%t Table[T[n,k], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, May 18 2024 *)

%o (Magma)

%o A177262:= func< n,k | k eq n select 1 else (n-k)*Factorial(n-k) >;

%o [A177262(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, May 18 2024

%o (SageMath)

%o def A177262(n,k): return (n-k)*factorial(n-k) + int(k==n)

%o flatten([[A177262(n,k) for k in range(1,n+1)] for n in range(1,13)]) # _G. C. Greubel_, May 18 2024

%Y Cf. A000142 (row sums), A005165, A007489, A094258.

%K nonn,tabl

%O 1,4

%A _Emeric Deutsch_, May 15 2010