%I #5 Mar 03 2013 13:39:38
%S 1,-1,0,-1,0,0,-1,1,0,0,-1,0,0,0,0,-1,1,1,0,0,0,-1,0,0,0,0,0,0,-1,1,0,
%T 0,0,0,0,0,-1,0,1,0,0,0,0,0,0,-1,1,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,
%U 0,0,-1,1,1,0,0,-1,0,0
%N Triangle read by rows, a signed variant of A077049 * A128407; as infinite lower triangular matrices
%C Row sums = mu(n), A008683
%F Given (-1)*triangle A077049, preface this with a "1" as row 1; = M.
%F Perform M * A128407 (the diagonalized variant of A008683); = A176918 as an
%F infinite lower triangular matrix.
%e First few rows of triangle A176918 =
%e 1;
%e -1, 0;
%e -1, 0, 0;
%e -1, 1, 0, 0;
%e -1, 0, 0, 0, 0;
%e -1, 1, 1, 0, 0, 0;
%e -1, 0, 0, 0, 0, 0, 0;
%e -1, 1, 0, 0, 0, 0, 0, 0;
%e -1, 0, 1, 0, 0, 0, 0, 0, 0;
%e -1, 1, 0, 0, 1, 0, 0, 0, 0, 0;
%e -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0;
%e -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
%e -1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
%e -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
%e ...
%Y Cf. A077049, A128407, A008683, A176890 (another version).
%K tabl,sign
%O 1,1
%A _Gary W. Adamson_ and _Mats Granvik_, Apr 29 2010