login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176422 A symmetrical triangle sequence;q=4;c(n,q)=Product[1 - q^i, {i, 1, n}];t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m] 0
1, 1, 1, 1, 4, 1, 1, 19, 19, 1, 1, 82, 352, 82, 1, 1, 337, 5788, 5788, 337, 1, 1, 1360, 93079, 376786, 93079, 1360, 1, 1, 5455, 1490833, 24208579, 24208579, 1490833, 5455, 1, 1, 21838, 23859082, 1550842030, 6221613472, 1550842030, 23859082, 21838, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Row sums are:
{1, 2, 6, 40, 518, 12252, 565666, 51409736, 9371059374, 3387887031700,
2463333456291194,...}.
LINKS
FORMULA
q=4;
c(n,q)=Product[1 - q^i, {i, 1, n}];
t(n,m,q)=t(n,m,q)=1 c(n, q)/(c[m, q)*c(n - m, q))-Binomial[n, m]
EXAMPLE
{1},
{1, 1},
{1, 4, 1},
{1, 19, 19, 1},
{1, 82, 352, 82, 1},
{1, 337, 5788, 5788, 337, 1},
{1, 1360, 93079, 376786, 93079, 1360, 1},
{1, 5455, 1490833, 24208579, 24208579, 1490833, 5455, 1},
{1, 21838, 23859082, 1550842030, 6221613472, 1550842030, 23859082, 21838, 1},
{1, 87373, 381767554, 99277752466, 1594283908456, 1594283908456, 99277752466, 381767554, 87373, 1},
{1, 349516, 6108368761, 6354157930606, 408235958349076, 1634141006295274, 408235958349076, 6354157930606, 6108368761, 349516, 1}
MATHEMATICA
c[n_, q_] = Product[1 - q^i, {i, 1, n}];
t[n_, m_, q_] = c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m] + 1;
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
CROSSREFS
Sequence in context: A323849 A254442 A340476 * A156586 A181544 A154283
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Apr 17 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 26 21:53 EDT 2024. Contains 372004 sequences. (Running on oeis4.)