The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176285 a(1) = 1, and then 4*(2*n + 1)^2*a(n+1) + n^2*a(n) = (205*n^2 + 160*n + 32)*binomial(2n-1,n)^3 (n = 1, 2, 3, ...). 2

%I #18 Dec 01 2018 08:02:40

%S 1,11,316,12011,522376,24593348,1219951188,62798884331,3323228619736,

%T 179665076698136,9880531254032176,550994628527745476,

%U 31084678988906064016,1770908612898043660556,101738260887234550287316

%N a(1) = 1, and then 4*(2*n + 1)^2*a(n+1) + n^2*a(n) = (205*n^2 + 160*n + 32)*binomial(2n-1,n)^3 (n = 1, 2, 3, ...).

%C On Apr 04 2010, _Zhi-Wei Sun_ introduced this sequence and conjectured that each term a(n) is a positive integer. He also guessed that a(n) is odd if and only if n is a power of two. It is easy to see that 8*n^2*binomial(2*n,n)^2*a(n) equals Sum_{k=0..n-1}(205*k^2 + 160*k + 32)*(-1)^{n - 1 - k}*binomial(2*k,k)^5. Sun also conjectured that for any prime p > 5 we have Sum_{k=0..p-1}(205*k^2 + 160*k + 32)(-1)^k*binomial(2*k,k)^5 = 32*p^2 + 64*p^3*Sum_{k=1..p-1}1/k (mod p^7) and Sum_{k=0..(p-1)/2}(205*k^2 + 160*k + 32)(-1)^k*binomial(2*k,k)^5 = 32*p^2 + 896/3*p^5*B_{p-3} (mod p^6), where B_0, B_1, B_2, ... are Bernoulli numbers. It is also remarkable that Sum_{n>0}(-1)^n(205*n^2 - 160*n + 32)/(n^5*binomial(2*n,n)^5) = -2*zeta(3) as proved by T. Amdeberhan and D. Zeilberger via the WZ method.

%H T. Amdeberhan and D. Zeilberger, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v4i2r3">Hypergeometric series acceleration via the WZ method</a>, Electron. J. Combin. 4(1997), no.2, #R3.

%H Kasper Andersen, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;72aeca0c.1002">Re: A somewhat surprising conjecture</a>

%H J. Guillera, <a href="https://arxiv.org/abs/1104.0396">Hypergeometric identities for 10 extended Ramanujan-type series</a>, arXiv:1104.0396 [math.NT], 2011; Ramanujan J. 15(2008), 219-234.

%H Z. W. Sun, <a href="http://arxiv.org/abs/0911.5665">Open Conjectures on Congruences</a>, preprint, arXiv:0911.5665 [math.NT], 2009-2011.

%H Zhi-Wei Sun, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;a39bf149.1002">A somewhat surprising conjecture</a>

%H Zhi-Wei Sun, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;4d3d48b9.1002">Re: A somewhat surprising conjecture</a>

%F a(n) = (Sum_{k=0..n-1} (205*k^2 + 160*k + 32)(-1)^{n - 1 - k}*binomial(2*k,k)^5)/(8*n^2*binomial(2*n,n)^2).

%e For n = 2 we have a(2) = 11 since 4*(2*1 + 1)^2*a(2) = -1^2*a(1) + (205*1^2 + 160*1 + 32)*binomial(2*1 - 1,1)^3 = 396.

%t u[n_]:=u[n]=((205(n-1)^2+160(n-1)+32)Binomial[2n-3,n-1]^3-(n-1)^2*u[n-1])/(4(2n-1)^2) u[1]=1 Table[u[n],{n,1,50}]

%Y Cf. A173774, A000984, A001700.

%K nonn

%O 1,2

%A _Zhi-Wei Sun_, Apr 14 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 18:22 EDT 2024. Contains 372494 sequences. (Running on oeis4.)