login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A176094 Triangle, read by rows, T(n,k) = f(n,k) - f(n,0) + 1, where f(n, k) = Sum_{j=0..k} (-1)^j*(n+k)!/((n-j)!*(k-j)!*j!) + Sum_{j=0..n-k} (-1)^j*(2*n - k)!/((n-j)!*(n-k-j)!*j!). 1
1, 1, 1, 1, 0, 1, 1, -78, -78, 1, 1, 1070, 1200, 1070, 1, 1, -16530, -14665, -14665, -16530, 1, 1, 240667, 179242, 163044, 179242, 240667, 1, 1, -2572332, -726012, -638358, -638358, -726012, -2572332, 1, 1, -29453058, -82571646, -81432978, -79275240, -81432978, -82571646, -29453058, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Row sums are: {1, 2, 2, -154, 3342, -62388, 1002864, -7873402, -466190602, 41337748316, -2470134563444, ...}.
LINKS
FORMULA
T(n,k) = f(n,k) - f(n,0) + 1, where f(n, k) = Sum_{j=0..k} (-1)^j*(n+k)!/((n-j)!*(k-j)!*j!) + Sum_{j=0..n-k} (-1)^j*(2*n - k)!/((n-j)!*(n-k-j)!*j!).
f(n,k) = binomial(n+k, n)*2F0(-n, -k; -; -1) + binomial(2*n-k, n)*2F0(-n, k-n; -; -1), where 2F0 is a generalized hypergeometric function. - G. C. Greubel, Nov 28 2019
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 0, 1;
1, -78, -78, 1;
1, 1070, 1200, 1070, 1;
1, -16530, -14665, -14665, -16530, 1;
1, 240667, 179242, 163044, 179242, 240667, 1;
MAPLE
b:=binomial; f(n, k):=b(n+k, n)*add((-1)^j*j!*b(n, j)*b(k, j), j=0..k) + b(2*n-k, n)*add((-1)^j*j!*b(n, j)*b(n-k, j), j=0..n-k); seq(seq(f(n, k)-f(n, 0)+1, k=0..n), n=0..10); # G. C. Greubel, Nov 27 2019
MATHEMATICA
(* First program *)
f[n_, k_]:= Sum[(-1)^j*(n+k)!/((n-j)!*(k-j)!*j!), {j, 0, k}] + Sum[(-1)^j*(2*n-k)! /((n-j)!*(n-k-j)!*j!), {j, 0, (n-m)}]; Table[f[n, m] -f[n, 0] +1, {n, 0, 10}, {k, 0, n}]//Flatten
(* Second program *)
f[n_, k_]:= Binomial[n+k, n]*HypergeometricPFQ[{-n, -k}, {}, -1] + Binomial[2*n-k, n]*HypergeometricPFQ[{-n, k - n}, {}, -1]; Table[f[n, k] - f[n, 0] + 1, {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 27 2019 *)
PROG
(PARI) b=binomial; f(n, k) = b(n+k, n)*sum(j=0, k, (-1)^j*j!*b(n, j)*b(k, j)) + b(2*n-k, n)* sum(j=0, n-k, (-1)^j*j!*b(n, j)*b(n-k, j));
T(n, k) = f(n, k) - f(n, 0) + 1; \\ G. C. Greubel, Nov 27 2019
(Magma)
function f(n, k)
B:=Binomial;
return B(n+k, n)*(&+[(-1)^j*Factorial(j)*B(n, j)*B(k, j): j in [0..k]]) + B(2*n-k, n)* (&+[(-1)^j*Factorial(j)*B(n, j)*B(n-k, j): j in [0..n-k]]); end function;
[f(n, k) -f(n, 0) +1: k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 27 2019
(Sage)
def f(n, k):
b=binomial;
return b(n+k, n)*sum((-1)^j*factorial(j)*b(n, j)*b(k, j) for j in (0..k)) + b(2*n-k, n)*sum((-1)^j*factorial(j)*b(n, j)*b(n-k, j) for j in (0..n-k))
[[f(n, k) -f(n, 0) +1 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 27 2019
(GAP)
B:=Binomial;;
f:= function(n, k) return B(n+k, n)*Sum([0..k], j-> (-1)^j*Factorial(j)*B(n, j)* B(k, j)) + B(2*n-k, n)*Sum([0..n-k], j-> (-1)^j*Factorial(j)*B(n, j)*B(n-k, j )); end;
Flat(List([0..10], n-> List([0..n], k-> f(n, k)-f(n, 0)+1 ))); # G. C. Greubel, Nov 27 2019
CROSSREFS
Sequence in context: A117330 A033398 A204376 * A124289 A181467 A344812
KEYWORD
sign,tabl
AUTHOR
Roger L. Bagula, Apr 08 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 20:33 EDT 2024. Contains 371916 sequences. (Running on oeis4.)