This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A176094 A symmetrical triangle sequence:t(n,m)=Sum[(-1)^k*(n + m)!/(( n - k)!*(m - k)!*k!), {k, 0, m}] + Sum[(-1)^k*(n + (n - m))!/((n - k)!*((n - m) - k)!*k!), {k, 0, (n - m)}];t1(n,m)=t(n,m)-t(n,0)+1 0
 1, 1, 1, 1, 0, 1, 1, -78, -78, 1, 1, 1070, 1200, 1070, 1, 1, -16530, -14665, -14665, -16530, 1, 1, 240667, 179242, 163044, 179242, 240667, 1, 1, -2572332, -726012, -638358, -638358, -726012, -2572332, 1, 1, -29453058, -82571646, -81432978 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Row sums are: {1, 2, 2, -154, 3342, -62388, 1002864, -7873402, -466190602, 41337748316, -2470134563444,...}. LINKS FORMULA t(n,m)=Sum[(-1)^k*(n + m)!/(( n - k)!*(m - k)!*k!), {k, 0, m}] + Sum[(-1)^k*(n + (n - m))!/((n - k)!*((n - m) - k)!*k!), {k, 0, (n - m)}]; ;t1(n,m)=t(n,m)-t(n,0)+1 EXAMPLE {1}, {1, 1}, {1, 0, 1}, {1, -78, -78, 1}, {1, 1070, 1200, 1070, 1}, {1, -16530, -14665, -14665, -16530, 1}, {1, 240667, 179242, 163044, 179242, 240667, 1}, {1, -2572332, -726012, -638358, -638358, -726012, -2572332, 1}, {1, -29453058, -82571646, -81432978, -79275240, -81432978, -82571646, -29453058, 1}, {1, 4090911030, 5625623025, 5495184255, 5457155847, 5457155847, 5495184255, 5625623025, 4090911030, 1}, {1, -244272466537, -288270741792, -281432018582, -280618259207, -280947591210, -280618259207, -281432018582, -288270741792, -244272466537, 1} MATHEMATICA t[n_, m_] = Sum[(-1)^k*(n + m)!/(( n - k)!*(m - k)!*k!), {k, 0, m}] + Sum[(-1)^k*(n + (n - m))!/((n - k)!*((n - m) - k)!*k!), {k, 0, (n - m)}]; Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A117330 A033398 A204376 * A124289 A181467 A217006 Adjacent sequences:  A176091 A176092 A176093 * A176095 A176096 A176097 KEYWORD sign,tabl,uned AUTHOR Roger L. Bagula, Apr 08 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.