login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175812
Partial sums of ceiling(n^2/6).
1
0, 1, 2, 4, 7, 12, 18, 27, 38, 52, 69, 90, 114, 143, 176, 214, 257, 306, 360, 421, 488, 562, 643, 732, 828, 933, 1046, 1168, 1299, 1440, 1590, 1751, 1922, 2104, 2297, 2502, 2718, 2947, 3188, 3442, 3709, 3990, 4284, 4593, 4916, 5254, 5607, 5976, 6360, 6761, 7178
OFFSET
0,3
COMMENTS
Partial sums of A008747.
There are several sequences of integers of the form ceiling(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,8,10,11,12, 14,15,16,19,20,23,24).
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round((2*n+1)*(2*n^2 + 2*n + 17)/72).
a(n) = floor((n+1)*(2*n^2 + n + 17)/36).
a(n) = ceiling((2*n^3 + 3*n^2 + 18*n)/36).
a(n) = round((2*n^3 + 3*n^2 + 18*n)/36).
a(n) = a(n-6) + (n+1)*(n-6) + 18, n > 5.
From Mircea Merca, Jan 09 2011: (Start)
a(n) = 2*a(n-1) - a(n-3) - a(n-4) + 2*a(n-6) - a(n-7), n > 6.
G.f.: x*(x^4+1) / ( (x+1)*(x^2+x+1)*(x-1)^4 ). (End)
EXAMPLE
a(6) = 0 + 1 + 1 + 2 + 3 + 5 + 6 = 18.
MAPLE
seq(floor((n+1)*(2*n^2+n+17)/36), n=0..50)
MATHEMATICA
Accumulate[Ceiling[Range[0, 50]^2/6]] (* Harvey P. Dale, Jan 17 2016 *)
PROG
(Magma) [Round((2*n+1)*(2*n^2+2*n+17)/72): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
(PARI) a(n) = (n+1)*(2*n^2+n+17)\36; \\ Altug Alkan, Sep 21 2018
CROSSREFS
Cf. A008747.
Sequence in context: A065962 A173722 A049703 * A002621 A343657 A363211
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 05 2010
STATUS
approved