The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175657 Eight bishops and one elephant on a 3 X 3 chessboard: a(n) = 3*2^n - 2*F(n+1), with F(n) = A000045(n). 4
 1, 4, 8, 18, 38, 80, 166, 342, 700, 1426, 2894, 5856, 11822, 23822, 47932, 96330, 193414, 388048, 778070, 1559334, 3123836, 6256034, 12525598, 25073088, 50181598, 100420510, 200933756, 402017562, 804277910, 1608948656, 3218532934 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654. The sequence above corresponds to 16 A[5] vectors with decimal values 43, 46, 106, 139, 142, 163, 166, 169, 172, 202, 226, 232, 298, 394, 418 and 424. These vectors lead for the side squares to A000079 and for the corner squares to A074878 (a(n)=3*2^n-2*F(n+2)). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-1,-2). FORMULA G.f.: (1+x-3*x^2)/(1-3*x+x^2+2*x^3). a(n) = 3*a(n-1)-a(n-2)-2*a(n-3) with a(0)=1, a(1)=4 and a(2)=8. MAPLE with(LinearAlgebra): nmax:=30; m:=5; A[5]:= [0, 0, 0, 1, 0, 1, 0, 1, 1]: A:=Matrix([[0, 0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 1, 0], A[5], [0, 1, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 1, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax); MATHEMATICA LinearRecurrence[{3, -1, -2}, {1, 4, 8}, 40] (* Harvey P. Dale, Aug 12 2012 *) CoefficientList[Series[(1 + x - 3 x^2) / (1 - 3 x + x^2 + 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *) PROG (MAGMA) I:=[1, 4, 8]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013 CROSSREFS Cf. A175655 (central square). Sequence in context: A008204 A190062 A228231 * A080287 A280155 A075310 Adjacent sequences:  A175654 A175655 A175656 * A175658 A175659 A175660 KEYWORD easy,nonn AUTHOR Johannes W. Meijer, Aug 06 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 05:39 EST 2020. Contains 331104 sequences. (Running on oeis4.)