login
A174480
Rectangular array of coefficients in successive iterations of x*exp(x), as read by antidiagonals.
13
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 15, 23, 1, 1, 5, 28, 102, 104, 1, 1, 6, 45, 274, 861, 537, 1, 1, 7, 66, 575, 3400, 8598, 3100, 1, 1, 8, 91, 1041, 9425, 50734, 98547, 19693, 1, 1, 9, 120, 1708, 21216, 187455, 880312, 1270160, 136064, 1, 1, 10, 153, 2612, 41629
OFFSET
1,5
COMMENTS
Triangle A174485 forms a matrix that transforms a diagonal into an adjacent diagonal in this array.
FORMULA
T(n,k) = [x^k/(k-1)! ] G_{n}(x) where G_{n}(x) = G_{n-1}(x*exp(x)) with G_0(x)=x, for n>=1, k>=1.
EXAMPLE
Form an array of coefficients in the iterations of x*exp(x), which begin:
n=1: [1, 1, 1/2!, 1/3!, 1/4!, 1/5!, 1/6!, ...];
n=2: [1, 2, 6/2!, 23/3!, 104/4!, 537/5!, 3100/6!, ...];
n=3: [1, 3, 15/2!, 102/3!, 861/4!, 8598/5!, 98547/6!, ...];
n=4: [1, 4, 28/2!, 274/3!, 3400/4!, 50734/5!, 880312/6!, ...];
n=5: [1, 5, 45/2!, 575/3!, 9425/4!, 187455/5!, 4367245/6!, ...];
n=6: [1, 6, 66/2!, 1041/3!, 21216/4!, 527631/5!, 15441636/6!, ...];
n=7: [1, 7, 91/2!, 1708/3!, 41629/4!, 1242892/5!, 43806175/6!, ...];
n=8: [1, 8, 120/2!, 2612/3!, 74096/4!, 2582028/5!, 106459312/6!, ...];
n=9: [1, 9, 153/2!, 3789/3!, 122625/4!, 4885389/5!, 230689017/6!, ...];
n=10:[1, 10, 190/2!, 5275/3!, 191800/4!, 8599285/5!, 457584940/6!,...];
...
This array begins with the above unreduced numerators for n >= 1, k >= 1.
PROG
(PARI) {T(n, k)=local(F=x, xEx=x*exp(x+x*O(x^(k+1)))); for(i=1, n, F=subst(F, x, xEx)); (k-1)!*polcoeff(F, k)}
CROSSREFS
Cf. A174485, diagonals: A174481, A174482, A174483, A174484.
Sequence in context: A370072 A287024 A107702 * A111670 A123353 A156540
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 17 2010
STATUS
approved