This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174275 a(n) = 2^n mod M(n) where M(n) = A014963(n) is the exponential of the Mangoldt function. 3
 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Appears to be always either 0 or 1. This follows from Fermat's Little Theorem. - Charles R Greathouse IV, Feb 13 2011 Characteristic function for odd prime powers (larger than one). - Antti Karttunen, Sep 14 2017, after Charles R Greathouse IV's Feb 13 2011 formula. LINKS Antti Karttunen, Table of n, a(n) for n = 1..16385 FORMULA a(n) = A000079(n) mod A014963(n). a(n) = 1 if n = p^k for k > 0 and p a prime not equal to 2, a(n) = 0 otherwise. - Charles R Greathouse IV, Feb 13 2011 PROG (PARI) vector(70, n, ispower(k=n, , &k); isprime(k)&k!=2) \\ Charles R Greathouse IV, Feb 13 2011 CROSSREFS Cf. A062173. Sequence in context: A022925 A144607 A051840 * A144599 A144608 A178226 Adjacent sequences:  A174272 A174273 A174274 * A174276 A174277 A174278 KEYWORD nonn,easy AUTHOR Mats Granvik, Mar 14 2010 EXTENSIONS More terms from Antti Karttunen, Sep 14 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 19 15:53 EST 2019. Contains 319307 sequences. (Running on oeis4.)