login
Averages of two consecutive even cubes: (n^3+(n+2)^3)/2.
3

%I #29 Sep 08 2022 08:45:51

%S 4,36,140,364,756,1364,2236,3420,4964,6916,9324,12236,15700,19764,

%T 24476,29884,36036,42980,50764,59436,69044,79636,91260,103964,117796,

%U 132804,149036,166540,185364,205556,227164,250236,274820,300964,328716,358124

%N Averages of two consecutive even cubes: (n^3+(n+2)^3)/2.

%H Vincenzo Librandi, <a href="/A173961/b173961.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F G.f.: x*(4+20*x+20*x^2+4*x^3)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 04 2012

%F a(n) = 8n^3 - 12n^2 + 12n - 4. - _Charles R Greathouse IV_, Jan 02 2012

%F a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - _Vincenzo Librandi_, Jul 02 2012

%F a(n) = 4 * A005898(n-1).

%e (0^3+2^3)/2=4, (2^3+4^3)/2=36, ....

%t f[n_]:=(n^3+(n+2)^3)/2;Table[f[n],{n,0,5!,2}]

%t CoefficientList[Series[(4+20*x+20*x^2+4*x^3)/(1-4*x+6*x^2-4*x^3+x^4),{x,0,40}],x] (* _Vincenzo Librandi_, Jul 02 2012 *)

%o (PARI) a(n)=4*n*(2*n^2-3*n+3)-4 \\ _Charles R Greathouse IV_, Jan 02 2012

%o (Magma) I:=[4, 36, 140, 364]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // _Vincenzo Librandi_, Jul 02 2012

%Y Cf. A005898, A027575, A173960.

%K nonn,easy

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Mar 03 2010