OFFSET
0,2
COMMENTS
Sequence appears to give signed Fibonacci numbers, where those Fibonacci numbers "missing" are in A173344. A117647 gives a nonnegative version without zeros. (a(n)) = kjbseq(X) with X = -0.25'i + 0.5'j + 0.5'k + 0.25'i + j' + 0.5k' - 0.25ii - 0.25'jj' - 0.25'kk' + 0.5'ij' + 0.5'ik' - 0.5'ji' -0.25'jk' + 0.25'kj' + 0.25'ee' (see Munafo link for definitions)
LINKS
C. Dement, Online Floretion Multiplier [broken link]
R. J. Mathar, Structure of the Floretion Group
R. Munafo, Sequences Related to Floretions
Index entries for linear recurrences with constant coefficients, signature (1,-2,-1,-1).
FORMULA
G.f.: (x+1)/(x^4+x^3+2*x^2-x+1).
a(n) = b(n)+b(n-1) where b(3n) = b(3n+1) = -b(3n+2) = (-1)^n*A001076(n+1). [From R. J. Mathar, Apr 01 2010]
MATHEMATICA
LinearRecurrence[{1, -2, -1, -1}, {1, 2, 0, -5}, 50] (* Harvey P. Dale, Jul 17 2018 *)
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Feb 16 2010
STATUS
approved