login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173258 Number of compositions of n where differences between neighboring parts are in {-1,1}. 4
1, 1, 1, 3, 2, 4, 5, 5, 7, 10, 9, 14, 16, 19, 24, 31, 35, 45, 55, 66, 84, 104, 124, 156, 192, 236, 292, 363, 444, 551, 681, 839, 1040, 1287, 1586, 1967, 2430, 3001, 3717, 4597, 5683, 7034, 8697, 10758, 13312, 16469, 20369, 25204, 31180, 38574, 47726, 59047 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA

a(n) ~ c * d^n, where d=1.23729141259673487395949649334678514763130846902468..., c=1.134796087242490181499736234755111281606636700030106.... - Vaclav Kotesovec, May 01 2014

EXAMPLE

a(3) = 3: [3], [2,1], [1,2].

a(4) = 2: [4], [1,2,1].

a(5) = 4: [5], [3,2], [2,3], [2,1,2].

a(6) = 5: [6], [3,2,1], [2,1,2,1], [1,2,3], [1,2,1,2].

MAPLE

b:= proc(n, i) option remember;

      `if`(n<1 or i<1, 0, `if`(n=i, 1, add(b(n-i, i+j), j=[-1, 1])))

    end:

a:= n-> `if`(n=0, 1, add(b(n, j), j=1..n)):

seq(a(n), n=0..70);

MATHEMATICA

b[n_, i_] := b[n, i] = If[n < 1 || i < 1, 0, If[n == i, 1, Sum[b[n - i, i + j], {j, {-1, 1}}]]]; a[n_] := If[n == 0, 1, Sum[b[n, j], {j, 1, n}]]; Table[a[n], {n, 0, 70}] // Flatten (* Jean-Fran├žois Alcover, Dec 13 2013, translated from Maple *)

CROSSREFS

Column k=1 of A214247, A214249.

Cf. A227310.

Sequence in context: A286298 A128440 A063201 * A039858 A035558 A089401

Adjacent sequences:  A173255 A173256 A173257 * A173259 A173260 A173261

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Jul 08 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 21:46 EST 2017. Contains 295141 sequences.