login
A173248
a(0)=1, a(n) = (-1)^n*(n^3-15*n^2-12+2*n)/6, n>0.
0
-1, 4, -10, 19, -30, 42, -54, 65, -74, 80, -82, 79, -70, 54, -30, -3, 46, -100, 166, -245, 338, -446, 570, -711, 870, -1048, 1246, -1465, 1706, -1970, 2258, -2571, 2910, -3276, 3670, -4093, 4546, -5030, 5546, -6095, 6678, -7296, 7950, -8641, 9370
OFFSET
0,2
COMMENTS
Limiting ratio a(n+1)/a(n) is near -1.071806167400881 as n->infinity.
FORMULA
G.f.: (x^4 - x^3 - 1)/(x + 1)^4.
a(n)= -4*a(n-1) -6*a(n-2) -4*a(n-3) -a(n-4).
MATHEMATICA
p[x_] = (x^4 - x^3 - 1)/(x + 1)^4;
a = Table[SeriesCoefficient[ Series[p[x], {x, 0, 50}], n], {n, 0, 50}]
LinearRecurrence[{-4, -6, -4, -1}, {-1, 4, -10, 19, -30}, 50] (* Harvey P. Dale, Nov 21 2019 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Feb 13 2010
EXTENSIONS
Definition simplified by the Assoc. Editors of the OEIS, Feb 21 2010
STATUS
approved