OFFSET
0,2
COMMENTS
Limiting ratio a(n+1)/a(n) is near -1.071806167400881 as n->infinity.
LINKS
Index entries for linear recurrences with constant coefficients, signature (-4, -6, -4, -1).
FORMULA
G.f.: (x^4 - x^3 - 1)/(x + 1)^4.
a(n)= -4*a(n-1) -6*a(n-2) -4*a(n-3) -a(n-4).
MATHEMATICA
p[x_] = (x^4 - x^3 - 1)/(x + 1)^4;
a = Table[SeriesCoefficient[ Series[p[x], {x, 0, 50}], n], {n, 0, 50}]
LinearRecurrence[{-4, -6, -4, -1}, {-1, 4, -10, 19, -30}, 50] (* Harvey P. Dale, Nov 21 2019 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Roger L. Bagula, Feb 13 2010
EXTENSIONS
Definition simplified by the Assoc. Editors of the OEIS, Feb 21 2010
STATUS
approved