OFFSET
1,2
COMMENTS
The definition is not quite right, and should be corrected.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..100
J. de Ruiter, On Jigsaw Sudoku Puzzles and Related Topics, Bachelor Thesis, Leiden Institute of Advanced Computer Science, 2010.
FORMULA
For n>3, a(n)=n!(n-2)!((n-1)/(n-2)d[n-1]^2+2d[n-1]d[n-2]+(2n-5)/(n-3)d[n-2]^2), where d[k] is the number of derangements of k elements (A000166).
EXAMPLE
Two arbitrary configurations for n=3:
123 312
2 1 1 3
312 231
Two arbitrary configurations for n=4:
1234 1432
2 1 3 4
3 2 4 1
4123 2143
MAPLE
d:= proc(n) d(n):= `if`(n<=1, 1-n, (n-1)*(d(n-1)+d(n-2))) end:
b:= proc(n) b(n):= `if`(n<4, [1, 1, 2][n], (n-2)!*((n-1)/
(n-2)*d(n-1)^2+2*d(n-1)*d(n-2)+(2*n-5)/(n-3)*d(n-2)^2))
end:
a:= n-> n!*b(n):
seq(a(n), n=1..20); # Alois P. Heinz, Aug 18 2013
MATHEMATICA
d = Subfactorial;
a[n_] := If[n <= 3, {1, 2, 12}[[n]], n! (n-2)! ((n-1)/(n-2) d[n-1]^2 + 2d[n-1] d[n-2] + (2n-5)/(n-3) d[n-2]^2)];
Array[a, 20] (* Jean-François Alcover, Nov 10 2020 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Johan de Ruiter, Feb 09 2010
STATUS
approved