%I #109 Sep 12 2017 08:59:57
%S 1,7,84,1463,33936,990542,34938624,1445713003,68639375616,
%T 3676366634402,219208706540544,14397191399702118,1032543050697424896,
%U 80280469685284582812,6725557192852592984064,603931579625379293509683
%N The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.
%H Vincenzo Librandi, <a href="/A172455/b172455.txt">Table of n, a(n) for n = 1..200</a>
%H R. J. Martin and M. J. Kearney, <a href="https://dx.doi.org/10.1007/s00010-010-0051-0">An exactly solvable self-convolutive recurrence</a>, Aequat. Math., 80 (2010), 291-318. see p. 307.
%H R. J. Martin and M. J. Kearney, <a href="http://arXiv.org/abs/1103.4936">An exactly solvable self-convolutive recurrence</a>, arXiv:1103.4936 [math.CO], 2011.
%H NIST Digital Library of Mathematical Functions, <a href="http://dlmf.nist.gov/9.5">Airy Functions</a>.
%H A. N. Stokes, <a href="https://doi.org/10.1017/S0004972700005219">Continued fraction solutions of the Riccati equation</a>, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AiryFunctions.html">Airy Functions</a>, contains the definitions of Ai(x), Bi(x).
%F a(n) = (6*n - 4) * a(n-1) - Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - _Michael Somos_, Jul 24 2011
%F G.f.: x / (1 - 7*x / (1 - 5*x / (1 - 13*x / (1 - 11*x / (1 - 19*x / (1 - 17*x / ... )))))). - _Michael Somos_, Jan 03 2013
%F a(n) = 3/(2*Pi^2)*int((4*x)^((3*n-1)/2)/(Ai'(x)^2+Bi'(x)^2), x=0..inf), where Ai'(x), Bi'(x) are the derivatives of the Airy functions. [_Vladimir Reshetnikov_, Sep 24 2013]
%F a(n) ~ 6^n * (n-1)! / (2*Pi) [Martin + Kearney, 2011, p.16]. - _Vaclav Kotesovec_, Jan 19 2015
%F 6*x^2*y' = y^2 - (2*x-1)*y - x, where y(x) = Sum_{n>=1} a(n)*x^n. - _Gheorghe Coserea_, May 12 2017
%F G.f.: x/(1 - 2*x - 5*x/(1 - 7*x/(1 - 11*x/(1 - 13*x/(1 - ... - (6*n - 1)*x/(1 - (6*n + 1)*x/(1 - .... Cf. A062980. - _Peter Bala_, May 21 2017
%e G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
%e a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
%t a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* _Vaclav Kotesovec_, Jan 19 2015 *)
%o (PARI) {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* _Michael Somos_, Jul 24 2011 */
%o (PARI)
%o S(v1, v2, v3, N=16) = {
%o my(a = vector(N)); a[1] = 1;
%o for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
%o };
%o S(6,-4,-1)
%o \\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
%o \\ _Gheorghe Coserea_, May 12 2017
%Y Cf. A000079 S(1,1,-1), A000108 S(0,0,1), A000142 S(1,-1,0), A000244 S(2,1,-2), A000351 S(4,1,-4), A000400 S(5,1,-5), A000420 S(6,1,-6), A000698 S(2,-3,1), A001710 S(1,1,0), A001715 S(1,2,0), A001720 S(1,3,0), A001725 S(1,4,0), A001730 S(1,5,0), A003319 S(1,-2,1), A005411 S(2,-4,1), A005412 S(2,-2,1), A006012 S(-1,2,2), A006318 S(0,1,1), A047891 S(0,2,1), A049388 S(1,6,0), A051604 S(3,1,0), A051605 S(3,2,0), A051606 S(3,3,0), A051607 S(3,4,0), A051608 S(3,5,0), A051609 S(3,6,0), A051617 S(4,1,0), A051618 S(4,2,0), A051619 S(4,3,0), A051620 S(4,4,0), A051621 S(4,5,0), A051622 S(4,6,0), A051687 S(5,1,0), A051688 S(5,2,0), A051689 S(5,3,0), A051690 S(5,4,0), A051691 S(5,5,0), A053100 S(6,1,0), A053101 S(6,2,0), A053102 S(6,3,0), A053103 S(6,4,0), A053104 S(7,1,0), A053105 S(7,2,0), A053106 S(7,3,0), A062980 S(6,-8,1), A082298 S(0,3,1), A082301 S(0,4,1), A082302 S(0,5,1), A082305 S(0,6,1), A082366 S(0,7,1), A082367 S(0,8,1), A105523 S(0,-2,1), A107716 S(3,-4,1), A111529 S(1,-3,2), A111530 S(1,-4,3), A111531 S(1,-5,4), A111532 S(1,-6,5), A111533 S(1,-7,6), A111546 S(1,0,1), A111556 S(1,1,1), A143749 S(0,10,1), A146559 S(1,1,-2), A167872 S(2,-3,2), A172450 S(2,0,-1), A172485 S(-1,-2,3), A177354 S(1,2,1), A292186 S(4,-6,1), A292187 S(3, -5, 1).
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Nov 20 2010