login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172215 Number of ways to place 6 nonattacking knights on a 6 X n board. 3
1, 58, 729, 8830, 60285, 257318, 858262, 2404448, 5879329, 12927182, 26115008, 49238436, 87675623, 148787822, 242366502, 381127124, 581249573, 862965246, 1251190796, 1776208532, 2474393475, 3388987070, 4570917554, 6079666980 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

V. Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes

FORMULA

a(n) = (648n^6-11340n^5+103770n^4-606645n^3+2328317n^2-5466660n+6051720)/10, n>=10.

G.f.: -x * (104*x^15 -116*x^14 -1328*x^13 +3992*x^12 +806*x^11 -16380*x^10 +27343*x^9 -4845*x^8 -15537*x^7 +38275*x^6 -2753*x^5 +11789*x^4 +4910*x^3 +344*x^2 +51*x +1) / (x-1)^7. - Vaclav Kotesovec, Mar 25 2010

MATHEMATICA

CoefficientList[Series[-(104 x^15 - 116 x^14 - 1328 x^13 + 3992 x^12 + 806 x^11 - 16380 x^10 + 27343 x^9 - 4845 x^8 - 15537 x^7 + 38275 x^6 - 2753 x^5 + 11789 x^4 + 4910 x^3 + 344 x^2 + 51 x + 1) / (x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, May 27 2013 *)

CROSSREFS

Cf. A061992, A172212, A172213, A172214.

Sequence in context: A246894 A204470 A254954 * A305263 A157252 A142966

Adjacent sequences:  A172212 A172213 A172214 * A172216 A172217 A172218

KEYWORD

nonn,easy

AUTHOR

Vaclav Kotesovec, Jan 29 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 18 20:06 EST 2018. Contains 318245 sequences. (Running on oeis4.)