login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172200
Number of ways to place 2 nonattacking amazons (superqueens) on an n X n board
7
0, 0, 0, 20, 92, 260, 580, 1120, 1960, 3192, 4920, 7260, 10340, 14300, 19292, 25480, 33040, 42160, 53040, 65892, 80940, 98420, 118580, 141680, 167992, 197800, 231400, 269100, 311220, 358092, 410060, 467480, 530720, 600160, 676192, 759220, 849660
OFFSET
1,4
COMMENTS
A amazon (superqueen) moves like a queen and a knight.
REFERENCES
Christian Poisson, Echecs et mathematiques, Rex Multiplex 29/1990, p.829
FORMULA
Explicit formula (Christian Poisson, 1990): a(n) = (n - 1)(n - 2)(n - 3)(3n + 8)/6.
G.f.: 4*x^4*(5-2*x)/(1-x)^5. - Colin Barker, Jan 09 2013
E.g.f.: 8 + (1/6)*(-48 +48*x -24*x^2 +8*x^3 +3*x^4)*exp(x). - G. C. Greubel, Apr 28 2022
MATHEMATICA
CoefficientList[Series[4x^3(5-2x)/(1-x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 27 2013 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 0, 20, 92}, 40] (* or *) Table[(n-1)(n-2)(n-3)(3n+8)/6, {n, 40}] (* Harvey P. Dale, May 16 2021 *)
PROG
(Magma) [(n-1)*(n-2)*(n-3)*(3*n+8)/6: n in [1..50]]; // Vincenzo Librandi, May 27 2013
(SageMath) [binomial(n-1, 3)*(3*n+8) for n in (1..50)] # G. C. Greubel, Apr 28 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jan 29 2010
STATUS
approved