login
A171663
Expansion of (1 + 4*x - 6*x^2 - 16*x^3 + 20*x^4)/((1-x)*(1-2*x)*(1+2*x)*(1-2*x^2)).
1
1, 5, 5, 13, 25, 41, 113, 145, 481, 545, 1985, 2113, 8065, 8321, 32513, 33025, 130561, 131585, 523265, 525313, 2095105, 2099201, 8384513, 8392705, 33546241, 33562625, 134201345, 134234113, 536838145, 536903681, 2147418113, 2147549185
OFFSET
0,2
LINKS
FORMULA
G.f.: (1 + 4*x - 6*x^2 - 16*x^3 + 20*x^4)/((1-x)*(1-2*x)*(1+2*x)*(1-2*x^2)). - Colin Barker, Apr 27 2013
MATHEMATICA
Flatten[Table[2^(2*n+1) + 1 + 2^(n+1) {-1, 1}, {n, 0, 40}]] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1+4*x-6*x^2-16*x^3+20*x^4)/((1-x)*(1- 2*x^2)*(1-4*x^2))) \\ G. C. Greubel, Jun 01 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+4*x-6*x^2-16*x^3+20*x^4)/((1-x)*(1- 2*x^2)*(1-4*x^2)) )); // G. C. Greubel, Jun 01 2019
(Sage) ((1+4*x-6*x^2-16*x^3+20*x^4)/((1-x)*(1- 2*x^2)*(1-4*x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jun 01 2019
CROSSREFS
Cf. A092440, A085601 (bisections). - R. J. Mathar, Jan 25 2010
Sequence in context: A094904 A286456 A352209 * A126439 A318541 A076903
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 14 2009
EXTENSIONS
More terms from R. J. Mathar and J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
New name from Joerg Arndt, Jun 03 2019
STATUS
approved