%I #20 Sep 08 2022 08:45:49
%S 1,1,0,0,0,1,1,0,0,1,1,0,0,1,2,1,0,1,2,1,0,1,3,2,0,1,3,3,1,1,4,4,1,1,
%T 4,5,2,1,5,7,3,1,5,8,5,2,6,10,6,1,5,12,9,2,5,13,11,3,4,14,15,5,4,15,
%U 17,7,4,15,21,10,4,15,23,13,4,15,27,17,5,14,28,21,6,13,31,26,8,12,31,30,11,11
%N Expansion of Product_{i=0..m-1} (1 + x^(4*i+1)) for m = 12.
%H Nathaniel Johnston, <a href="/A170975/b170975.txt">Table of n, a(n) for n = 0..276</a> (full sequence)
%F a(n) = a(276-n). - _Rick L. Shepherd_, Mar 01 2013
%p seq(coeff(mul((1+x^(4*i+1)),i=0..11),x,n),n=0..100); # _Nathaniel Johnston_, Jun 24 2011
%t With[{m=12}, CoefficientList[Series[Product[(1 + x^(4*j+1)), {j,0,m-1}], {x,0,100}],x]] (* _G. C. Greubel_, Feb 24 2019 *)
%o (PARI) m=12; my(x='x+O('x^(100))); Vec(prod(j=0,m-1, 1+x^(4*j+1) )) \\ _G. C. Greubel_, Feb 24 2019
%o (Magma) m:=12; R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( (&*[1+x^(4*j+1): j in [0..m-1]]) )); // _G. C. Greubel_, Feb 24 2019
%o (Sage) m=12; ( prod(1+x^(4*j+1) for j in (0..m-1)) ).series(x, 100).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 24 2019
%Y Cf. A169975, A170966-A170984.
%K nonn,fini,full,easy
%O 0,15
%A _N. J. A. Sloane_, Aug 29 2010
%E Typo in Maple program fixed and b-file extended 9 terms by _Rick L. Shepherd_, Mar 01 2013