login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170751 Expansion of g.f.: (1+x)/(1-31*x). 50
1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909141472, 26228105183385632, 813071260684954592, 25205209081233592352, 781361481518241362912, 24222205927065482250272, 750888383739029949758432 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Kenny Lau, Table of n, a(n) for n = 0..670

Index entries for linear recurrences with constant coefficients, signature (31).

FORMULA

a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*32^k. - Philippe Deléham, Dec 04 2009

a(0) = 1; for n>0, a(n) = 32*31^(n-1). - Vincenzo Librandi, Dec 05 2009

E.g.f.: (1/31)*(32*exp(31*x) - 1). - Stefano Spezia, Oct 09 2019

MAPLE

k:=32; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 09 2019

MATHEMATICA

With[{k = 32}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 09 2019 *)

PROG

(Python) for i in range(1001):print(i, 32*31**(i-1) if i>0 else 1) # Kenny Lau, Aug 03 2017

(PARI) vector(26, n, k=32; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 09 2019

(MAGMA) k:=32; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 09 2019

(Sage) k=32; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 09 2019

(GAP) k:=32;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 09 2019

CROSSREFS

Cf. A003945.

Sequence in context: A170617 A170665 A170713 * A218734 A065552 A298193

Adjacent sequences:  A170748 A170749 A170750 * A170752 A170753 A170754

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 04:15 EDT 2020. Contains 334859 sequences. (Running on oeis4.)