login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170751
Expansion of g.f.: (1+x)/(1-31*x).
50
1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909141472, 26228105183385632, 813071260684954592, 25205209081233592352, 781361481518241362912, 24222205927065482250272, 750888383739029949758432
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*32^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 32*31^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (1/31)*(32*exp(31*x) - 1). - Stefano Spezia, Oct 09 2019
MAPLE
k:=32; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 09 2019
MATHEMATICA
With[{k = 32}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 09 2019 *)
PROG
(Python) for i in range(1001):print(i, 32*31**(i-1) if i>0 else 1) # Kenny Lau, Aug 03 2017
(PARI) vector(26, n, k=32; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 09 2019
(Magma) k:=32; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 09 2019
(Sage) k=32; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 09 2019
(GAP) k:=32;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 09 2019
CROSSREFS
Cf. A003945.
Sequence in context: A170617 A170665 A170713 * A218734 A065552 A298193
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved