

A168323


a(1)=3, a(2)=5; a(n+1) is the smallest prime number greater than a(n1) and not equal to a(n) such that the sum of any three consecutive terms is a prime.


0



3, 5, 11, 7, 13, 11, 17, 13, 23, 17, 31, 19, 47, 23, 61, 29, 67, 31, 83, 37, 103, 41, 107, 43, 113, 67, 127, 83, 137, 97, 139, 101, 149, 103, 157, 107, 167, 109, 173, 127, 179, 137, 193, 149, 199, 151, 227, 163, 229, 179, 233, 181, 239, 193, 241, 197, 263, 199, 271
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..59.


MATHEMATICA

a=3; b=5; lst={a, b}; Do[Do[If[PrimeQ[q]&&PrimeQ[a+b+q]&&q!=b, c=q; Break[]], {q, a+2, 9!, 2}]; AppendTo[lst, c]; a=b; b=c, {n, 6!}]; lst


CROSSREFS

Cf. A062391, A168322.
Sequence in context: A137656 A046228 A132162 * A154561 A073653 A225487
Adjacent sequences: A168320 A168321 A168322 * A168324 A168325 A168326


KEYWORD

nonn


AUTHOR

Vladimir Joseph Stephan Orlovsky, Nov 22 2009


STATUS

approved



