login
A166813
Number of n X 8 1..2 arrays containing at least one of each value, all equal values connected, rows considered as a single number in nondecreasing order, and columns considered as a single number in nondecreasing order.
3
7, 43, 163, 493, 1285, 3001, 6433, 12868, 24308, 43756, 75580, 125968, 203488, 319768, 490312, 735469, 1081573, 1562273, 2220073, 3108103, 4292143, 5852923, 7888723, 10518298, 13884154, 18156202, 23535818, 30260338, 38608018, 48903490, 61523746, 76904683
OFFSET
1,1
LINKS
FORMULA
a(n) = A000581(n+8)-2. - Alois P. Heinz, May 31 2012
From G. C. Greubel, May 24 2016: (Start)
G.f.: 1/(1-x)^9 - (1+x)/(1-x).
E.g.f.: (1/8!)*(-40320 + 322560*x + 564480*x^2 + 376320*x^3 + 117600*x^4 + 18816*x^5 + 1568*x^6 + 64*x^7 + x^8)*exp(x) + 1. (End)
EXAMPLE
Some solutions for n=4
...1.1.1.1.1.2.2.2...1.1.1.1.1.1.2.2...1.1.1.1.1.1.2.2...1.1.1.1.1.1.2.2
...1.1.1.1.1.2.2.2...1.1.1.2.2.2.2.2...1.1.1.1.1.1.2.2...1.1.1.1.1.2.2.2
...1.2.2.2.2.2.2.2...1.1.1.2.2.2.2.2...1.1.1.2.2.2.2.2...1.1.1.2.2.2.2.2
...1.2.2.2.2.2.2.2...1.1.2.2.2.2.2.2...1.1.2.2.2.2.2.2...1.1.1.2.2.2.2.2
------
...1.1.1.1.1.1.1.1...1.1.1.1.1.1.1.2...1.1.1.1.1.1.1.2...1.1.1.1.1.1.2.2
...1.1.1.1.1.1.1.1...1.1.1.1.1.1.1.2...1.1.1.1.1.2.2.2...1.2.2.2.2.2.2.2
...1.2.2.2.2.2.2.2...1.1.1.1.1.1.1.2...1.1.1.2.2.2.2.2...2.2.2.2.2.2.2.2
...1.2.2.2.2.2.2.2...1.2.2.2.2.2.2.2...1.1.2.2.2.2.2.2...2.2.2.2.2.2.2.2
MAPLE
a:= n-> binomial(n+8, 8)-2:
seq (a(n), n=1..40); # Alois P. Heinz, May 31 2012
MATHEMATICA
Table[Binomial[n+8, 8] -2, {n, 1, 100}] (* G. C. Greubel, May 24 2016 *)
CROSSREFS
Sequence in context: A201707 A365302 A255314 * A112563 A143569 A351936
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 21 2009
STATUS
approved