login
A166029
Continued fraction expansion for the order -1/2 harmonic number of 1/2
0
0, 2, 3, 1, 1, 4, 7, 1, 1, 2, 1, 4, 24, 3, 1, 6, 13, 1, 8, 2, 6, 1, 5, 3, 2, 1, 5, 1, 3, 12, 6, 637, 1, 9, 6, 1, 2, 2, 1, 9, 1, 1, 2, 3, 3, 2, 54, 45, 1, 16, 3, 4, 22, 1, 6, 5, 1, 3, 1, 1, 3, 2, 7, 1, 3, 1, 6, 21, 1, 24, 1, 237, 2, 22, 3, 1, 7, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 13, 1, 4, 1, 13, 1, 2, 1
OFFSET
1,2
COMMENTS
If f(x) is defined as the sum of n=1 until x of all square roots of n then this number here is f(1/2).
MATHEMATICA
ContinuedFraction[HarmonicNumber[1/2, -1/2], 200]
CROSSREFS
Sequence in context: A002784 A353248 A276010 * A049278 A194680 A131739
KEYWORD
cofr,nonn
AUTHOR
Leonhard Kreissig, Oct 05 2009
STATUS
approved