login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A165817 Number of compositions (= ordered integer partitions) of n into 2n parts. 22

%I #73 Feb 16 2024 06:28:51

%S 1,2,10,56,330,2002,12376,77520,490314,3124550,20030010,129024480,

%T 834451800,5414950296,35240152720,229911617056,1503232609098,

%U 9847379391150,64617565719070,424655979547800,2794563003870330,18412956934908690,121455445321173600

%N Number of compositions (= ordered integer partitions) of n into 2n parts.

%C Number of ways to put n indistinguishable balls into 2*n distinguishable boxes.

%C Number of rankings of n unlabeled elements for 2*n levels.

%H Alois P. Heinz, <a href="/A165817/b165817.txt">Table of n, a(n) for n = 0..400</a>

%H W. Mlotkowski and K. A. Penson, <a href="http://arxiv.org/abs/1309.0595">Probability distributions with binomial moments</a>, arXiv preprint arXiv:1309.0595 [math.PR], 2013.

%F a(n) = 9*sqrt(3)*GAMMA(n+5/3)*GAMMA(n+4/3)*27^n/(Pi*GAMMA(2*n+3)).

%F a(n) = binomial(3*n-1, n);

%F Let denote P(n) = the number of integer partitions of n,

%F p(i) = the number of parts of the i-th partition of n,

%F d(i) = the number of different parts of the i-th partition of n,

%F m(i,j) = multiplicity of the j-th part of the i-th partition of n.

%F Then one has:

%F a(n) = Sum_{i=1..P(n)} (2*n)!/((2*n-p(i))!*(Prod_{j=1..d(i)} m(i,j)!)).

%F a(n) = rf(2*n,n)/ff(n,n), where rf is the rising factorial and ff the falling factorial. - _Peter Luschny_, Nov 21 2012

%F G.f.: A(x) = x*B'(x)/B(x), where B(x) satisfies B(x)^3-2*B(x)^2+B(x)=x, B(x)=A006013(x). - _Vladimir Kruchinin_, Feb 06 2013

%F G.f.: A(x) = sqrt(3*x)*cot(asin((3^(3/2)*sqrt(x))/2)/3)/(sqrt(4-27*x)). - _Vladimir Kruchinin_, Mar 18 2015

%F a(n) = Sum_{k=0..n}(binomial(n-1,n-k)*binomial(2*n,k)). - _Vladimir Kruchinin_, Oct 06 2015

%F From _Peter Bala_, Nov 04 2015: (Start)

%F The o.g.f. equals f(x)/g(x), where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A013698 (k = 5), A117671 (k = -2). (End)

%F a(n) = [x^n] 1/(1 - x)^(2*n). - _Ilya Gutkovskiy_, Oct 03 2017

%F a(n) = A059481(2n,n). - _Alois P. Heinz_, Oct 17 2022

%F From _Peter Bala_, Feb 14 2024: (Start)

%F a(n) = (-1)^n * binomial(-2*n, n).

%F a(n) = hypergeom([1 - 2*n, -n], [1], 1).

%F The g.f. A(x) satisfies A(x/(1 + x)^3) = 1/(1 - 2*x).

%F Sum_{n >= 0} a(n)/9^n = (1 + 4*cos(Pi/9))/3.

%F Sum_{n >= 0} a(n)/27^n = (3 + 4*sqrt(3)*cos(Pi/18))/9.

%F Sum_{n >= 0} a(n)*(2/27)^n = (2 + sqrt(3))/3. (End)

%e Let [1,1,1], [1,2] and [3] be the integer partitions of n=3.

%e Then [0,0,0,1,1,1], [0,0,0,0,1,2] and [0,0,0,0,0,3] are the corresponding partitions occupying 2*n = 6 positions.

%e We have to take into account the multiplicities of the parts including the multiplicities of the zeros.

%e Then

%e [0,0,0,1,1,1] --> 6!/(3!*3!) = 20

%e [0,0,0,0,1,2] --> 6!/(4!*1!*1!) = 30

%e [0,0,0,0,0,3] --> 6!/(5!*1!) = 6

%e and thus a(3) = 20+30+6=56.

%e a(2)=10, since we have 10 ordered partitions of n=2 where the parts are distributed over 2*n=4 boxes:

%e [0, 0, 0, 2]

%e [0, 0, 1, 1]

%e [0, 0, 2, 0]

%e [0, 1, 0, 1]

%e [0, 1, 1, 0]

%e [0, 2, 0, 0]

%e [1, 0, 0, 1]

%e [1, 0, 1, 0]

%e [1, 1, 0, 0]

%e [2, 0, 0, 0].

%p for n from 0 to 16 do

%p a[n] := 9*sqrt(3)*GAMMA(n+5/3)*GAMMA(n+4/3)*27^n/(Pi*GAMMA(2*n+3))

%p end do;

%t Table[Binomial[3 n - 1, n], {n, 0, 20}] (* _Vincenzo Librandi_, Aug 07 2014 *)

%o (Sage)

%o def A165817(n):

%o return rising_factorial(2*n,n)/falling_factorial(n,n)

%o [A165817(n) for n in (0..22)] # _Peter Luschny_, Nov 21 2012

%o (Magma) [Binomial(3*n-1, n): n in [0..30]]; // _Vincenzo Librandi_, Aug 07 2014

%o (PARI) vector(30, n, n--; binomial(3*n-1, n)) \\ _Altug Alkan_, Nov 04 2015

%o (Python)

%o from math import comb

%o def A165817(n): return comb(3*n-1,n) if n else 1 # _Chai Wah Wu_, Oct 11 2023

%Y Cf. A000079, A001700, A059481, A081204, A001764, A004319, A006013, A005809, A013698, A025174, A045721, A117671, A236194.

%K nonn,easy

%O 0,2

%A _Thomas Wieder_, Sep 29 2009

%E a(0) prepended and more terms from _Alois P. Heinz_, Apr 04 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 7 16:48 EDT 2024. Contains 372310 sequences. (Running on oeis4.)