login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A165527
Number of permutations of length n which avoid the patterns 4231 and 2143.
1
1, 2, 6, 22, 86, 335, 1271, 4680, 16766, 58656, 201106, 677767, 2251011, 7382992, 23955716, 77010180, 245577076, 777648145, 2447486221, 7661760386, 23872087936, 74071120682, 228988898916, 705618033237, 2168073549821, 6644571015750, 20317533778906
OFFSET
1,2
REFERENCES
Kremer, Darla; and Shiu, Wai Chee; Finite transition matrices for permutations avoiding pairs of length four patterns. Discrete Math. 268 (2003), no. 1-3, 171-183. MR1983276 (2004b:05006). See Table 1.
FORMULA
G.f.: (x-11*x^2+51*x^3-127*x^4+186*x^5-165*x^6+87*x^7-23*x^8+3*x^9) / ((1-3*x)*(1-x)^4*(1-3*x+x^2)^2). - Vincent Vatter, Jun 21 2011
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[(x-11*x^2+51*x^3-127*x^4+186*x^5-165*x^6+87*x^7 -23*x^8+3*x^9)/((1-3*x)*(1-x)^4*(1-3*x+x^2)^2), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
PROG
(PARI) Vec(x*(1 - 11*x + 51*x^2 - 127*x^3 + 186*x^4 - 165*x^5 + 87*x^6 - 23*x^7 + 3*x^8) / ((1 - x)^4*(1 - 3*x)*(1 - 3*x + x^2)^2) + O(x^30)) \\ Colin Barker, Oct 31 2017
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((x -11*x^2+51*x^3-127*x^4+186*x^5-165*x^6+87*x^7 -23*x^8+3*x^9)/((1-3*x)* (1-x)^4*(1-3*x+x^2)^2))); // G. C. Greubel, Oct 22 2018
CROSSREFS
Sequence in context: A165524 A165525 A165526 * A165528 A116709 A165529
KEYWORD
nonn,easy
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
More terms from Vincent Vatter, Jun 21 2011
STATUS
approved