login
Least prime p such that 2x^2 + p produces primes for x=0..n-1 and composite for x=n.
3

%I #12 May 15 2023 16:08:19

%S 2,17,3,1481,5,149,569,2081,2339,5939831,11,33164857769

%N Least prime p such that 2x^2 + p produces primes for x=0..n-1 and composite for x=n.

%C Other known values: a(14)=272259344081 and a(29)=29. There are no other terms less than 10^12. The primes p = 3, 5, 11, and 29 produce p consecutive distinct primes because the imaginary quadratic field Q(sqrt(-2p)) has class number 2. Assuming the prime k-tuples conjecture, this sequence is defined for n>0.

%D Paulo Ribenboim, My Numbers, My Friends, Springer,2000, pp. 349-350.

%H R. A. Mollin, <a href="http://www.jstor.org/stable/2975080">Prime-producing quadratics</a>, Amer. Math. Monthly 104 (1997), 529-544.

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomial</a>

%t PrimeRun[p_Integer] := Module[{k=0}, While[PrimeQ[2k^2+p], k++ ]; k]; nn=9; t=Table[0,{nn}]; cnt=0; p=1; While[cnt<nn, p=NextPrime[p]; n=PrimeRun[p]; If[n<=nn && t[[n]]==0, t[[n]]=p; cnt++ ]]; t

%Y Cf. A007641, A050265, A161008, A164926.

%K hard,nonn,more

%O 1,1

%A _T. D. Noe_, Sep 09 2009