login
A164853
a(n) = lcm(first n semiprimes).
2
4, 12, 36, 180, 1260, 1260, 1260, 13860, 69300, 900900, 900900, 15315300, 15315300, 290990700, 290990700, 6692786100, 46849502700, 46849502700, 46849502700, 46849502700, 1358635578300, 42117702927300, 42117702927300, 42117702927300
OFFSET
1,1
COMMENTS
This is to A002110 Primorial numbers as semiprimes A001358 is to prime A000040.
a(n) = a(n-1) if A001358(n) is the product of two distinct odd primes. - Robert Israel, Feb 05 2020
LINKS
FORMULA
a(n) = lcm_{i=1..n} A001358(i).
a(1) = A001358(1) = 4; a(n) = lcm(a(n-1), A001358(n)). - Zak Seidov, Aug 31 2009
EXAMPLE
a(1) = 4, the first semiprime. a(2) = lcm(4,6) = 12. a(3) = lcm(4,6,9) = 36.
MAPLE
N:= 10^3: # to use semiprimes <= N
SP:= select(t -> numtheory:-bigomega(t)=2, [$4..N]):
A[1]:= SP[1]:
for n from 2 to N do
A[n]:= ilcm(A[n-1], SP[n])
od:
seq(A[i], i=1..N); # Robert Israel, Feb 05 2020
MATHEMATICA
With[{s=Select[Range[100], PrimeOmega[#]==2&]}, Table[LCM@@Take[s, n], {n, Length[s]}]] (* Harvey P. Dale, May 05 2015 *)
CROSSREFS
Sequence in context: A293857 A052643 A140123 * A076124 A247952 A183923
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Aug 28 2009
EXTENSIONS
More terms from Zak Seidov, Aug 31 2009
STATUS
approved