OFFSET
1,3
COMMENTS
Same recurrence for A163695.
Same recurrence for A163714.
Appears to coincide with diagonal sums of A072405. - Paul Barry, Aug 10 2009
From Gary W. Adamson, Sep 15 2016: (Start)
Let the sequence prefaced with a 1: (1, 1, 1, 2, 2, 4, 6, ...) equate to r(x). Then (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) = the Fibonacci sequence, (1, 1, 2, 3, 5, ...). Let M = the following production matrix:
1, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
2, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
4, 2, 1, 0, 0, ...
6, 2, 1, 1, 0, ...
...
Limit of the matrix power M^k as k->infinity results in a single column vector equal to the Fibonacci sequence. (End)
Apparently a(n) = A128588(n-2) for n > 3. - Georg Fischer, Oct 14 2018
LINKS
R. H. Hardin, Table of n, a(n) for n=1..100
FORMULA
Empirical: a(n) = a(n-1) + a(n-2) for n >= 5.
G.f.: (1-x^3)/(1-x-x^2) (conjecture). - Paul Barry, Aug 10 2009
a(n) = round(phi^(k-1)) - round(phi^(k-1)/sqrt(5)), phi = (1 + sqrt(5))/2 (conjecture). - Federico Provvedi, Mar 26 2013
G.f.: 1 + 2*x - x*Q(0), where Q(k) = 1 + x^2 - (2*k+1)*x + x*(2*k-1 - x)/Q(k+1); (conjecture), (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
G.f.: If prefaced with a 1, (1, 1, 1, 2, 2, 4, ...): (1 - x^2 - x^4)/(1 - x - x^2); where the modified sequence satisfies A(x)/A(x^2), A(x) is the Fibonacci sequence. - Gary W. Adamson, Sep 15 2016
EXAMPLE
All solutions for n=8:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1
0 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1
0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0
0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0
0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
------
1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 1 0 1 0 1 0
1 1 1 1 0 1 1 0 1 1 1 1
1 0 1 0 1 1 1 1 0 1 0 1
1 1 1 0 1 0 0 1 0 1 1 1
0 1 1 1 1 1 1 1 1 1 1 0
0 1 0 1 0 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1
MATHEMATICA
Join[{1, 1}, Table[2*Fibonacci[n], {n, 70}]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
Table[Round[GoldenRatio^(k-1)] - Round[GoldenRatio^(k-1)/Sqrt[5]], {k, 1, 70}] (* Federico Provvedi, Mar 26 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 03 2009
STATUS
approved