login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163733
Number of n X 2 binary arrays with all 1's connected, all corners 1, and no 1 having more than two 1's adjacent.
5
1, 1, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
OFFSET
1,3
COMMENTS
Same recurrence for A163695.
Same recurrence for A163714.
Appears to coincide with diagonal sums of A072405. - Paul Barry, Aug 10 2009
From Gary W. Adamson, Sep 15 2016: (Start)
Let the sequence prefaced with a 1: (1, 1, 1, 2, 2, 4, 6, ...) equate to r(x). Then (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) = the Fibonacci sequence, (1, 1, 2, 3, 5, ...). Let M = the following production matrix:
1, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, ...
2, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
4, 2, 1, 0, 0, ...
6, 2, 1, 1, 0, ...
...
Limit of the matrix power M^k as k->infinity results in a single column vector equal to the Fibonacci sequence. (End)
Apparently a(n) = A128588(n-2) for n > 3. - Georg Fischer, Oct 14 2018
LINKS
FORMULA
Empirical: a(n) = a(n-1) + a(n-2) for n >= 5.
G.f.: (1-x^3)/(1-x-x^2) (conjecture). - Paul Barry, Aug 10 2009
a(n) = round(phi^(k-1)) - round(phi^(k-1)/sqrt(5)), phi = (1 + sqrt(5))/2 (conjecture). - Federico Provvedi, Mar 26 2013
G.f.: 1 + 2*x - x*Q(0), where Q(k) = 1 + x^2 - (2*k+1)*x + x*(2*k-1 - x)/Q(k+1); (conjecture), (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
G.f.: If prefaced with a 1, (1, 1, 1, 2, 2, 4, ...): (1 - x^2 - x^4)/(1 - x - x^2); where the modified sequence satisfies A(x)/A(x^2), A(x) is the Fibonacci sequence. - Gary W. Adamson, Sep 15 2016
EXAMPLE
All solutions for n=8:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1
0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1
0 1 1 0 1 0 1 1 0 1 1 0 0 1 0 1 1 0 1 1
0 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 0 1 0
0 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0
0 1 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
------
1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 1 0 1 0 1 0
1 1 1 1 0 1 1 0 1 1 1 1
1 0 1 0 1 1 1 1 0 1 0 1
1 1 1 0 1 0 0 1 0 1 1 1
0 1 1 1 1 1 1 1 1 1 1 0
0 1 0 1 0 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1
MATHEMATICA
Join[{1, 1}, Table[2*Fibonacci[n], {n, 70}]] (* Vladimir Joseph Stephan Orlovsky, Feb 10 2012 *)
Table[Round[GoldenRatio^(k-1)] - Round[GoldenRatio^(k-1)/Sqrt[5]], {k, 1, 70}] (* Federico Provvedi, Mar 26 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 03 2009
STATUS
approved