login
G.f.: A(x) = exp( Sum_{n>=1} A162552(n)^2*x^n/n ) where the l.g.f. of A162552 is the log of the characteristic function of the squares.
2

%I #4 Mar 30 2012 18:37:17

%S 1,1,1,1,3,6,10,15,18,35,73,143,230,296,416,753,1673,2934,4203,5654,

%T 9135,17881,33102,52787,73749,107869,189629,359107,619296,923833,

%U 1306855,2065717,3776424,6823452,10935160,15822727,23395694,39675378

%N G.f.: A(x) = exp( Sum_{n>=1} A162552(n)^2*x^n/n ) where the l.g.f. of A162552 is the log of the characteristic function of the squares.

%C A162552 is defined by: exp( Sum_{n>=1} A162552(n)*x^n/n ) = Sum_{n>=0} x^(n^2).

%H Paul D. Hanna, <a href="/A162553/b162553.txt">Table of n, a(n), n = 0..330.</a>

%e G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 15*x^6 +...

%e log(A(x)) = x + x^2/2 + x^3/3 + 9*x^4/4 + 16*x^5/5 + 25*x^6/6 + 36*x^7/7 +...+ A162552(n)^2*x^n/n +...

%e Let L(x) = x - 1*x^2/2 + 1*x^3/3 + 3*x^4/4 - 4*x^5/5 + 5*x^6/6 - 6*x^7/7 +...+ A162552(n)*x^n/n +... then

%e exp(L(x)) = 1 + x + x^4 + x^9 + x^16 + x^25 + x^36 +...+ x^(n^2) +...

%e is the characteristic function of the squares (A010052).

%o (PARI) {a(n)=local(Q=sum(m=0,n,x^(m^2))+x*O(x^n),A); A=exp(sum(k=1,n,polcoeff(log(Q),k)^2*k*x^k)+x*O(x^n));polcoeff(A,n)}

%Y Cf. A162552, A010052, A162416 (variant).

%K nonn

%O 0,5

%A _Paul D. Hanna_, Jul 06 2009