login
The list of the k values in the common solutions to the 2 equations 5*k+1=A^2, 9*k+1=B^2.
2

%I #13 Oct 07 2024 01:06:34

%S 0,7,336,15792,741895,34853280,1637362272,76921173511,3613657792752,

%T 169764995085840,7975341111241735,374671267233275712,

%U 17601574218852716736,826899317018844410887,38846666325666834594960,1824966417989322381552240,85734574979172485098360327

%N The list of the k values in the common solutions to the 2 equations 5*k+1=A^2, 9*k+1=B^2.

%C The 2 equations are equivalent to the Pell equation x^2-45*y^2=1, with x=(45*k+7)/2 and y= A*B/2, case C=5 in A160682.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (48,-48,1).

%F k(t+3) = 48*(k(t+2)-k(t+1))+k(t).

%F With w = sqrt(5),

%F k(t) = ((7+3*w)*((47+21*w)/2)^(t-1)+(7-3*w)*((47-21*w)/2)^(t-1))/90.

%F k(t) = floor((7+3*w)*((47+21*w)/2)^(t-1)/90) = 7*|A156093(t-1)|.

%F G.f.: -7*x^2/((x-1)*(x^2-47*x+1)).

%F a(1)=0, a(2)=7, a(3)=336, a(n) = 48*a(n-1)-48*a(n-2)+a(n-3). - _Harvey P. Dale_, Mar 21 2013

%p t:=0: for n from 0 to 1000000 do a:=sqrt(5*n+1); b:=sqrt(9*n+1);

%p if (trunc(a)=a) and (trunc(b)=b) then t:=t+1; print(t,n,a,b): end if: end do:

%t LinearRecurrence[{48,-48,1},{0,7,336},30] (* or *) Rest[CoefficientList[ Series[ -7x^2/((x-1)(x^2-47x+1)),{x,0,30}],x]] (* _Harvey P. Dale_, Mar 21 2013 *)

%Y Cf. A160682, A049685 (sequence of A), A033890 (sequence of B).

%K nonn,easy

%O 1,2

%A _Paul Weisenhorn_, Jun 14 2009

%E Edited, extended by _R. J. Mathar_, Sep 02 2009