login
A160863
Expansion of (1+147*x+1142*x^2+1717*x^3+656*x^4+60*x^5+x^6)/(1-x)^7.
1
1, 154, 2199, 13911, 57209, 179988, 471675, 1082509, 2246545, 4308382, 7753615, 13243011, 21650409, 34104344, 52033395, 77215257, 111829537, 158514274, 220426183, 301304623, 405539289, 538241628, 705319979, 913558437, 1170699441
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
FORMULA
a(n) = 931*n^6/180 +1261*n^5/60 +1547*n^4/36 +565*n^3/12 +1276*n^2/45 +42*n/5 +1. - R. J. Mathar, Sep 17 2011
MAPLE
seq(coeff(series((1+147*x+1142*x^2+1717*x^3+656*x^4+60*x^5+x^6)/(1-x)^7, x, n+1), x, n), n=0..25); # Muniru A Asiru, Apr 29 2018
MATHEMATICA
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 154, 2199, 13911, 57209, 179988, 471675}, 30] (* G. C. Greubel, Apr 28 2018 *)
PROG
(Magma) [931*n^6/180 +1261*n^5/60 +1547*n^4/36 +565*n^3/12 +1276*n^2/45 +42*n/5+1: n in [0..30]]; // Vincenzo Librandi, Sep 20 2011
(PARI) x='x+O('x^30); Vec((1+147*x+1142*x^2+1717*x^3+656*x^4+60*x^5+ x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018
CROSSREFS
Sequence in context: A200552 A160854 A159639 * A160840 A160841 A160853
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved