login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160364 Let f be defined as in A159885 and f^k be the k-th iteration of f. Then a(n) is the least k for which either {A000120(f^k(2n+1)) < A000120(2n+1)}&{A006694((f^k(2n+1)-1)/2)<=A006694(n)} or {A000120(f^k(2n+1))<=A000120(2n+1)}&{A006694((f^k(2n+1)-1)/2) < A006694(n)} 0

%I #2 Mar 30 2012 18:52:53

%S 2,1,1,5,3,1,1,2,5,1,2,1,1,1,1,5,2,5,3,33,3,1,1,1,1,1,1,1,1,3,1,5,7,1,

%T 5,10,1,1,2,5,5,1,1

%N Let f be defined as in A159885 and f^k be the k-th iteration of f. Then a(n) is the least k for which either {A000120(f^k(2n+1)) < A000120(2n+1)}&{A006694((f^k(2n+1)-1)/2)<=A006694(n)} or {A000120(f^k(2n+1))<=A000120(2n+1)}&{A006694((f^k(2n+1)-1)/2) < A006694(n)}

%C Using induction, one can prove that the Collatz (3x+1)-conjecture follows from the finiteness of a(n) for every n.

%e Beginning with n=1, we have f(2n+1)=f(3)=5. Here A000120(3)=A000120(5)=2 and A006694((3-1)/2)= A006694((5-1)/2)=1. None of values did not become less than. Therefore a(1)>1. Since f(5)=1 and A000120(1)=1 and A006694(0)=0, then a(2)=2.

%Y A000120 A006694 A160267 A006694 A122458 A160266 A159885 A159945 A160198

%K nonn,uned

%O 1,1

%A _Vladimir Shevelev_, May 11 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 5 01:52 EDT 2024. Contains 372257 sequences. (Running on oeis4.)