login
A160006
a(n) = least number b such that A000404(n) = b^2+c^2, 0 < b <= c.
0
1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 4, 3, 1, 2, 4, 3, 1, 4, 2, 3, 5, 1, 2, 6, 3, 5, 4, 1, 2, 5, 3, 4, 7, 6, 1, 2, 5, 3, 7, 4, 6, 1, 2, 8, 3, 6, 4, 1, 5, 2, 7, 3, 6, 4, 9, 8, 5, 1, 2, 3, 6, 9, 4, 7, 5, 1, 2, 9, 3, 8, 4, 7, 5, 9, 1, 2, 6, 8, 3, 4, 11, 10, 7, 5, 1, 2, 6, 3, 10, 4, 7, 9, 5, 12, 8, 1, 6, 2, 10, 3, 4, 9
OFFSET
1,3
EXAMPLE
a(1)=1 because A000404(1)=2=1^2+1^2,
a(2)=1 because A000404(2)=5=1^2+2^2,
a(3)=2 because A000404(3)=8=2^2+2^2,
a(9932)=141 (maximal value for n<=10000) because A000404(9932)=39762=141^2+141^2.
CROSSREFS
A000404 Numbers that are the sum of 2 nonzero squares.
Sequence in context: A304036 A173442 A112309 * A060682 A352897 A280363
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 29 2009
STATUS
approved