%I #15 Mar 01 2016 05:54:26
%S 1,-2,1,-2,-1,1,-4,4,0,-2,1,-8,24,-32,14,8,-8,0,-1,1,-16,112,-448,
%T 1116,-1744,1552,-384,-700,736,-160,-128,64,0,0,0,-2,1,-32,480,-4480,
%U 29112,-139552,509600,-1441024,3166616,-5345344,6668992,-5473536,1494624,3005056,-4820608
%N Coefficients of polynomials Q(n,x):=-2+(1+Q(n-1,x))^2, where Q(1,x)=x-2.
%C Let P(n,x) be the n-th polynomial at A158984. Then Q(n,x)=P(n-1,x)-1 is a factor of P(n,x).
%H Clark Kimberling, <a href="http://www.fq.math.ca/Papers1/48-3/Kimberling.pdf">Polynomials defined by a second-order recurrence, interlacing zeros, and Gray codes</a>, The Fibonacci Quarterly 48 (2010) 209-218.
%e Row 1: 1 -2 (from x-2)
%e Row 2: 1 -2 -1 (from x^2-2x-1)
%e Row 3: 1 -4 4 0 -2
%e Row 4: 1 -8 24 -32 14 8 -8 0 -1
%o (PARI) tabf(nn) = {p = x-2; print(Vec(p)); for (n=2, nn, p = -2 + (p+1)^2; print(Vec(p)););} \\ _Michel Marcus_, Mar 01 2016
%Y Cf. A158982, A158983, A158984, A158985.
%K sign,tabf
%O 1,2
%A _Clark Kimberling_, Apr 02 2009