The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158469 Continued fraction for hz = limit_{k -> infinity} 1 + k - Sum_{j = -k..k} exp(-2^j). 2
 1, 3, 189, 3, 2, 2, 1, 5, 4, 1, 1, 3, 1, 1, 1, 5, 8, 12, 1, 22, 7, 14, 1, 2, 1, 5, 1, 4, 222, 1, 1, 2, 3, 24, 6, 27, 1, 15, 1, 9, 1, 1, 18, 6, 24, 2, 1, 7, 1, 4, 2, 2, 1, 1, 84, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 15, 3, 13, 3, 2, 14, 1, 1, 1, 10, 15, 10, 1, 6, 120, 1, 31, 2, 4, 2, 7, 2, 2, 1, 1, 1, 1, 1, 3, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE 1.33274738243289922500860109837389970441674398225984453657972 ... MAPLE with(numtheory): hz:= limit(1+k -sum(exp(-2^j), j=-k..k), k=infinity): cfrac(evalf(hz, 130), 100, 'quotients')[]; MATHEMATICA terms = 95; digits = terms+15; Clear[f]; f[k_] := f[k] = 1+k-Sum[Exp[-2^j], {j, -k, k}] // RealDigits[#, 10, digits+1]& // First // Quiet; f[1]; f[n = 2]; While[f[n] != f[n-1], n++]; hz = FromDigits[f[n]]*10^-digits; ContinuedFraction[hz, terms] (* Jean-François Alcover, Mar 23 2017 *) CROSSREFS Cf. A158468 (decimal expansion), A159835 (Engel expansion). Sequence in context: A157590 A157236 A058856 * A261000 A032594 A159658 Adjacent sequences: A158466 A158467 A158468 * A158470 A158471 A158472 KEYWORD cofr,nonn AUTHOR Alois P. Heinz, Mar 19 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 01:51 EST 2022. Contains 358649 sequences. (Running on oeis4.)