login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157757
a(n) = 2809*n^2 - 4618*n + 1898.
3
89, 3898, 13325, 28370, 49033, 75314, 107213, 144730, 187865, 236618, 290989, 350978, 416585, 487810, 564653, 647114, 735193, 828890, 928205, 1033138, 1143689, 1259858, 1381645, 1509050, 1642073, 1780714, 1924973, 2074850
OFFSET
1,1
COMMENTS
The identity (15780962*n^2-25943924*n+10662963)^2-(2809*n^2-4618*n+1898)*(297754*n-244754)^2=1 can be written as A157759(n)^2-a(n)*A157758(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-89-3631*x-1898*x^2)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {89, 3898, 13325}, 40]
Table[2809n^2-4618n+1898, {n, 40}] (* Harvey P. Dale, Aug 02 2024 *)
PROG
(Magma) I:=[89, 3898, 13325]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
(PARI) a(n) = 2809*n^2 - 4618*n + 1898;
CROSSREFS
Sequence in context: A264068 A189020 A322503 * A017805 A017752 A282478
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 06 2009
STATUS
approved