login
A050165*A130595 as infinite lower triangular matrices.
2

%I #19 Jan 18 2022 13:25:22

%S 1,0,1,0,-1,2,0,2,-6,5,0,-5,20,-28,14,0,14,-70,135,-120,42,0,-42,252,

%T -616,770,-495,132,0,132,-924,2730,-4368,4004,-2002,429,0,-429,3432,

%U -11880,23100,-27300,19656,-8008,1430

%N A050165*A130595 as infinite lower triangular matrices.

%C Triangle, read by rows, given by [0,-1,-1,-1,-1,-1,-1,...] DELTA [1,1,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938. Triangle related to k-regular trees.

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Barry2/barry231.html">A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays</a>, Journal of Integer Sequences, 16 (2013), #13.5.4.

%H Jian Zhou, <a href="https://arxiv.org/abs/2108.10514">On Some Mathematics Related to the Interpolating Statistics</a>, arXiv:2108.10514 [math-ph], 2021.

%F Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.

%F Sum_{k=0..n} T(n,k)*x^(n-k) = A064093, A064092, A064091, A064090, A064089, A064088, A064087, A064063, A064062, A000108, A000012, A064310, A064311, A064325, A064326, A064327, A064328, A064329, A064330, A064331, A064332, A064333 for x = -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12 respectively. [_Philippe Deléham_, Mar 03 2009]

%e Triangle begins:

%e 1;

%e 0, 1;

%e 0, -1, 2;

%e 0, 2, -6, 5;

%e 0, -5, 20, -28, 14;

%e ...

%Y Cf. A000108, A062991, A094385.

%K sign,tabl

%O 0,6

%A _Philippe Deléham_, Mar 01 2009