login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157434
a(n) = 4*n^2 + 79*n + 390.
3
473, 564, 663, 770, 885, 1008, 1139, 1278, 1425, 1580, 1743, 1914, 2093, 2280, 2475, 2678, 2889, 3108, 3335, 3570, 3813, 4064, 4323, 4590, 4865, 5148, 5439, 5738, 6045, 6360, 6683, 7014, 7353, 7700, 8055, 8418, 8789, 9168, 9555, 9950, 10353, 10764
OFFSET
1,1
COMMENTS
The identity (128*n^2 + 2528*n + 12481)^2 - (4*n^2 + 79*n + 390)*(64*n + 632)^2 = 1 can be written as A157436(n)^2 - a(n)*A157435(n)^2 = 1.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(-390*x^2 + 855*x - 473)/(x-1)^3. [corrected by Georg Fischer, May 11 2019]
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {473, 564, 663}, 50]
PROG
(Magma) I:=[473, 564, 663]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 4*n^2 + 79*n + 390
CROSSREFS
Sequence in context: A180838 A006180 A074654 * A084629 A075286 A235897
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 01 2009
STATUS
approved