login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157271
Size of the largest set encompassing no {x, 2x} nor {x, 3x} contained in D(n) = the first n 3-smooth numbers {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27,...} (A003586).
2
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 11, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 33, 34, 34, 35, 35
OFFSET
1,3
COMMENTS
This is the strongly triple-free analog of A057561 and the description is modeled after A094708.
a(n) is the size of the maximal independent set in a grid graph with vertex set D(n) and edges connecting every x to 2x and every x to 3x.
LINKS
Julien Cassaigne and Paul Zimmermann, Numerical Evaluation of the Strongly Triple-Free Constant (pdf file, 1996).
Steven R. Finch, Triple-Free Sets of Integers [From Steven Finch, Apr 20 2019]
EXAMPLE
For n=7, the grid graph has rows {1,3,9}, {2,6}, {4}, {8} and the maximal set of nonadjacent vertices is {1,4,6,9}, hence a(7)=4.
MATHEMATICA
f[k_, n_]:=1+Floor[FullSimplify[Log[n/3^k]/Log[2]]]; g[n_]:=Floor[FullSimplify[Log[n]/Log[3]]]; peven[n_]:=Sum[Quotient[f[k, n]+Mod[k+1, 2], 2], {k, 0, g[n]}]; podd[n_]:=Sum[Quotient[f[k, n]+Mod[k, 2], 2], {k, 0, g[n]}]; p[n_]:=Max[peven[n], podd[n]]; v[1]=1; j=1; k=1; n=70; For[k=2, k<=n, k++, If[2*v[k-j]<3^j, v[k]=2*v[k-j], {v[k]=3^j, j++}]]; Table[p[v[n]], {n, 1, 70}] (* Steven Finch, Feb 27 2009; corrected by Giovanni Resta, Jul 29 2015 *)
CROSSREFS
Sequence in context: A358854 A330015 A331163 * A025162 A330027 A373074
KEYWORD
nonn
AUTHOR
Steven Finch, Feb 26 2009
STATUS
approved