login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156791
INVERTi transform of A006973.
2
1, 1, 6, 7, 78, 420, 6872, 17253, 326552, 2680988, 33949242, 386091406, 5974089338, 67562271804, 1708769998136, 16983594666421, 329723068729854, 5611760457560028, 121573316570762036, 2099347805249971662, 50720938223339101844, 1008798617234428297708
OFFSET
1,3
LINKS
FORMULA
INVERTi transform of (A006973 with offset 1) = (1, 2, 9, 24, 130, 720, ...).
Coefficients of ( S(n, x)/(x + S(n, x)) ), where S(n, x) = Sum_{j=0..n+2} A006973(j)*x^j. - G. C. Greubel, Jun 10 2021
EXAMPLE
The sequence begins (1, 1, ...); then for all further a(n), write (n-1) terms of A006973 backwards. Take the dot of the latter and the first (n-1) terms of sequence. Subtract from the next term of A006973.
Example: a(4) = 7 = (24 - (9, 2, 1) dot (1, 1, 6)) = 24 - 17.
MATHEMATICA
A006973[n_]:= A006973[n]= If[n<4, Max[n-1, 0], (n-1)!*(1 + Sum[k*(-A006973[k]/k!)^(n/k), {k, Most[Divisors[n]]}])];
S[n_, x_]:= Sum[A006973[j]*x^j, {j, 0, n+2}];
Rest@With[{p = 100}, CoefficientList[Series[S[p, x]/(x + S[p, x]), {x, 0, 60}], x]] (* G. C. Greubel, Jun 10 2021 *)
CROSSREFS
Sequence in context: A042877 A219517 A232008 * A223532 A041081 A041082
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Feb 15 2009
EXTENSIONS
Terms a(11) onward added by G. C. Greubel, Jun 10 2021
STATUS
approved