The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A156619 Numbers congruent to {7, 18} mod 25. 2
 7, 18, 32, 43, 57, 68, 82, 93, 107, 118, 132, 143, 157, 168, 182, 193, 207, 218, 232, 243, 257, 268, 282, 293, 307, 318, 332, 343, 357, 368, 382, 393, 407, 418, 432, 443, 457, 468, 482, 493, 507, 518, 532, 543, 557, 568, 582, 593, 607, 618, 632, 643, 657, 668 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also, numbers n such that n^2+1 == 0 (mod 25). Numbers of the form 25*n+7 or 25*n+18. Numbers b such that 25 is a base-b Euler pseudoprime. - Karsten Meyer, Jan 05 2011, LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA a(n) = 2*a(n-1)-a(n-2)-3, if n is even, and a(n) = 2*a(n-1)-a(n-2)+3, if n is odd, with a(1)=7, a(2)=18. From R. J. Mathar, Feb 19 2009: (Start) a(n) = a(n-1)+a(n-2)-a(n-3). a(n) = 25*n/2-25/4-3*(-1)^n/4. G.f.: x*(7+11*x+7*x^2)/((1+x)*(1-x)^2). (End) E.g.f.: 7 + ((50*x - 25)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 08 2022 MATHEMATICA fQ[n_] := Mod[n^2 + 1, 25] == 0; Select[ Range@ 670, fQ] Flatten[#+{7, 18}&/@(25*Range[0, 30])] (* Harvey P. Dale, Jan 24 2013 *) Select[Range[1, 700], MemberQ[{7, 18}, Mod[#, 25]]&] (* Vincenzo Librandi, Apr 08 2013 *) PROG (Magma) [n: n in [1..700] | n mod 25 in [7, 18]]; // Vincenzo Librandi, Apr 08 2013 CROSSREFS Sequence in context: A103571 A103572 A049532 * A033537 A352741 A225286 Adjacent sequences: A156616 A156617 A156618 * A156620 A156621 A156622 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, Feb 11 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 00:02 EST 2023. Contains 359905 sequences. (Running on oeis4.)