login
A156194
Period 12: 1,2,7,1,7,2,1,1,4,2,4,1 repeated.
2
1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1, 1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1
OFFSET
0,2
COMMENTS
Also the decimal expansion of 42390704747/333333333333. - R. J. Mathar, Feb 23 2009
FORMULA
Palindromic properties: a(12k+i) = a(12k+6-i), i=0..3. a(12k+7+i) = a(12k+11-i), i=0..2, and similarly for successive differences.
a(n) = A156095(n) mod 9.
a(n) = A156094(n+6) mod 9.
a(4n) + a(4n+1) + a(4n+2) + a(4n+3) = A010850(n).
G.f.: (1+2*x+7*x^2+x^3+7*x^4+2*x^5+x^6+x^7+4*x^8+2*x^9+4*x^10+x^11)/((1-x)*(1+x+x^2)*(1+x)*(1-x+x^2)*(1+x^2)*(x^4-x^2+1)). - R. J. Mathar, Feb 23 2009
MATHEMATICA
PadRight[{}, 144, {1, 2, 7, 1, 7, 2, 1, 1, 4, 2, 4, 1}] (* Harvey P. Dale, Mar 06 2012 *)
CROSSREFS
Sequence in context: A371838 A373779 A215941 * A271855 A021372 A170936
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Feb 05 2009
EXTENSIONS
Edited by R. J. Mathar, Feb 23 2009
More terms from Jinyuan Wang, Feb 26 2020
STATUS
approved