login
A155711
Intersection of A154777 and A155717: N = a^2 + 2b^2 = c^2 + 7d^2 for some positive integers a,b,c,d.
0
11, 43, 44, 67, 72, 88, 99, 107, 113, 121, 137, 144, 163, 172, 176, 179, 193, 211, 233, 268, 275, 281, 288, 331, 337, 344, 347, 352, 379, 387, 396, 401, 428, 443, 449, 452, 457, 473, 484, 491, 499, 536, 539, 547, 548, 569, 571, 576, 603, 617, 641, 648, 652
OFFSET
1,1
PROG
(PARI) isA155711(n, /* optional 2nd arg allows us to get other sequences */c=[7, 2]) = { for(i=1, #c, for(b=1, sqrtint((n-1)\c[i]), issquare(n-c[i]*b^2) & next(2)); return); 1}
for( n=1, 999, isA155711(n) & print1(n", "))
KEYWORD
easy,nonn
AUTHOR
M. F. Hasler, Jan 25 2009
STATUS
approved