login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155583 The sequence is a factorization of a designed multi-bifurcative triangle sequence: t(n,m)=A155582(n,m); f(n, m) = If[m <= Floor[n/2], f(m, 1)*f(n - m, 1)*t(n, m)]. 0
1, 1, 2, 6, 12, 28, 36, 36, 216, 216, 720, 1512, 1512, 2520, 12096, 12096, 12096, 10080, 60480, 108864, 108864, 54432, 604800, 604800, 1088640, 544320, 326592 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Row sums are:

{1, 1, 2, 6, 40, 72, 1152, 5544, 46368, 332640, 3169152,...}.

LINKS

Table of n, a(n) for n=0..26.

FORMULA

t(n,m)=A155582(n,m); f(n, m) = If[m <= Floor[n/2], f(m, 1)*f(n - m, 1)*t(n, m)].

EXAMPLE

Factor sequence is:

{1},

{1},

{2},

{6},

{12, 28},

{36, 36},

{216, 216, 720},

{1512, 1512, 2520},

{12096, 12096, 12096, 10080},

{60480, 108864, 108864, 54432}, {604800, 604800, 1088640, 544320, 326592}

MATHEMATICA

Clear[t, a, b, c, n, m, f, x];

a[0] = 1; a[n_] := a[n] = ((4*n - 2)/(n + 1))*a[n - 1];

b[0] = 1; b[n_] := b[n] = If[IntegerQ[((3*n - 2)/(n + 1))*b[n - 1]], ((3*n - 2)/(n + 1))*b[n - 1], If[IntegerQ[((4*n - 2)/( n + 1))*b[n - 1]], ((4*n - 2)/(n + 1))*b[n - 1], n*b[n - 1]]]

c[0] = 1; c[n_] := c[n] = If[IntegerQ[((6*n - 4)/(n + 1))*c[n - 1]], ((6*n - 4)/(n + 1))*c[n - 1], If[IntegerQ[((4*n - 2)/(n + 1))*c[n - 1]], ((4*n - 2)/(n + 1))* c[n - 1], n*c[n - 1]]];

t[n_, m_] := t[n, m] = If[IntegerQ[a[n]/(a[m]*a[n - m])], a[n]/(a[m]*a[n - m]), If[IntegerQ[b[n]/(b[m]*b[ n - m])], b[n]/(b[ m]*b[n - m]), If[IntegerQ[c[n]/(c[m]* c[n - m])], c[n]/(c[m]*c[n - m]), Binomial[n, m]]]];

f[0, 1] = 1; f[1, 1] = 1; f[2, 1] = 2;

f[n_, m_] := f[n, m] = If[m <= Floor[n/2], f[m, 1]*f[n - m, 1]*t[n, m]];

a = Join[{{1}}, {{1}}, Table[Table[f[n, m], {m, 1, Floor[n/2]}], {n, 2, 10}]];

Flatten[%]

CROSSREFS

Cf. A155582

Sequence in context: A059078 A166963 A188476 * A140853 A185961 A290674

Adjacent sequences:  A155580 A155581 A155582 * A155584 A155585 A155586

KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula, Jan 24 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 17 16:15 EST 2018. Contains 299296 sequences. (Running on oeis4.)