%I #20 Mar 17 2024 07:37:02
%S 1,2,3,4,5,6,7,8,110,510,511,1010,1014,1015,2022,2023,2464,3030,3031,
%T 4912,5054,5831,7360,8203,9854,10010,10094,10307,10308,11645,12102,
%U 12103,12255,12256,13110,13111,13116,13880,14704,15134,17152,17575,18238,19600,19682
%N Numbers k such that k, k + 1 and k + 2 are 3 consecutive Harshad numbers.
%C Harshad numbers are also known as Niven numbers.
%C Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite. - _Amiram Eldar_, Jan 03 2020
%D Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.
%H Robert Israel, <a href="/A154701/b154701.txt">Table of n, a(n) for n = 1..10000</a>
%H Curtis Cooper and Robert E. Kennedy, <a href="http://www.fq.math.ca/Scanned/31-2/cooper.pdf">On consecutive Niven numbers</a>, Fibonacci Quarterly, Vol. 21, No. 2 (1993), pp. 146-151.
%H Helen G. Grundman, <a href="https://www.fq.math.ca/Scanned/32-2/grundman.pdf">Sequences of consecutive Niven numbers</a>, Fibonacci Quarterly, Vol. 32, No. 2 (1994), pp. 174-175.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Harshad_number">Harshad number</a>
%H Brad Wilson, <a href="http://www.fq.math.ca/Scanned/35-2/wilson.pdf">Construction of 2n consecutive n-Niven numbers</a>, Fibonacci Quarterly, Vol. 35, No. 2 (1997), pp. 122-128.
%e 110 is a term since 110 is divisible by 1 + 1 + 0 = 2, 111 is divisible by 1 + 1 + 1 = 3, and 112 is divisible by 1 + 1 + 2 = 4.
%p Res:= NULL: count:= 0:
%p state:= 1:
%p L:= [1]:
%p for n from 2 while count < 100 do
%p L[1]:=L[1]+1;
%p for k from 1 while L[k]=10 do L[k]:= 0;
%p if k = nops(L) then L:= [0$nops(L),1]; break
%p else L[k+1]:= L[k+1]+1 fi
%p od:
%p s:= convert(L,`+`);
%p if n mod s = 0 then
%p state:= min(state+1,3);
%p if state = 3 then count:= count+1; Res:= Res, n-2; fi
%p else state:= 0
%p fi
%p od:
%p Res; # _Robert Israel_, Feb 01 2019
%t nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; niv = nivenQ /@ Range[3]; seq = {}; Do[niv = Join[Rest[niv], {nivenQ[k]}]; If[And @@ niv, AppendTo[seq, k - 2]], {k, 3, 2*10^4}]; seq (* _Amiram Eldar_, Jan 03 2020 *)
%o (C) #include <stdio.h>
%o #include <conio.h>
%o int is_harshad(int n){
%o int i,j,count=0;
%o i=n;
%o while(i>0){
%o count=count+i%10;
%o i=i/10;
%o }
%o return n%count==0?1:0;
%o }
%o main(){
%o int k;
%o clrscr();
%o for(k=1;k<=30000;k++)
%o if(is_harshad(k)&&is_harshad(k+1)&&is_harshad(k+2))
%o printf("%d,",k);
%o getch();
%o return 0;
%o }
%o (Magma) f:=func<n|n mod &+Intseq(n) eq 0>; a:=[]; for k in [1..20000] do if forall{m:m in [0..2]|f(k+m)} then Append(~a,k); end if; end for; a; // _Marius A. Burtea_, Jan 03 2020
%o (Python)
%o from itertools import count, islice
%o def agen(): # generator of terms
%o h1, h2, h3 = 1, 2, 3
%o while True:
%o if h3 - h1 == 2: yield h1
%o h1, h2, h3 = h2, h3, next(k for k in count(h3+1) if k%sum(map(int, str(k))) == 0)
%o print(list(islice(agen(), 45))) # _Michael S. Branicky_, Mar 17 2024
%Y A subset of A005349.
%Y Cf. A060159, A141769, A328210, A328214, A330927, A330928, A330929, A330930, A330932.
%K nonn,base
%O 1,2
%A Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 14 2009, Jan 15 2009