login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A154629 Period 9: repeat [9, 3, 1, 3, 3, 1, 3, 9, 1]. 1
9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3, 1, 3, 9, 1, 9, 3, 1, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Terms of the simple continued fraction of 20690/(sqrt(158206085)-10345). Decimal expansion of 310443797/333333333. - Paolo P. Lava, Feb 17 2009

Greatest common divisor of (n+1)^2-1 and (n+1)^2+8. - Bruno Berselli, Mar 08 2017

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,1).

FORMULA

a(n) = A147674(n)/9.

a(n) = A005563(n) / A144454(n+1) for n>0.

a(n) = (1/108)*(-85*(n mod 9) + 107*((n+1) mod 9) - 61*((n+2) mod 9) - 13*((n+3) mod 9) + 35*((n+4) mod 9) + 11*((n+5) mod 9) - 13*((n+6) mod 9) + 35*((n+7) mod 9) + 83*((n+8) mod 9)).  - Paolo P. Lava, Jan 19 2009

From Colin Barker, Dec 21 2017: (Start)

G.f.: (9 + 3*x + x^2 + 3*x^3 + 3*x^4 + x^5 + 3*x^6 + 9*x^7 + x^8) / ((1 - x)*(1 + x + x^2)*(1 + x^3 + x^6)).

a(n) = a(n-9) for n>8.

(End)

MATHEMATICA

With[{n=5}, PadLeft[{}, 9n, {9, 3, 1, 3, 3, 1, 3, 9, 1}]] (* Harvey P. Dale, Oct 22 2011 *)

PROG

(PARI) Vec((9 + 3*x + x^2 + 3*x^3 + 3*x^4 + x^5 + 3*x^6 + 9*x^7 + x^8) / ((1 - x)*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^100)) \\ Colin Barker, Dec 21 2017

CROSSREFS

Sequence in context: A097528 A065416 A093312 * A154489 A187832 A085579

Adjacent sequences:  A154626 A154627 A154628 * A154630 A154631 A154632

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Jan 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 11:09 EDT 2019. Contains 328216 sequences. (Running on oeis4.)